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Abstract

A quantum process encodes the causal structure that relates quantum operations performed in local
laboratories. The process matrix formalism includes as special cases quantum mechanics on a fixed
background space-time, but also allows for more general causal structures. Motivated by the
interpretation of processes as a resource for quantum information processing shared by two (or more)
parties, with advantages recently demonstrated both for computation and communication tasks, we
investigate the notion of composition of processes. We show that under very basic assumptions such a
composition rule does not exist. While the availability of multiple independent copies of a resource,
e.g. quantum states or channels, is the starting point for defining information-theoretic notions such
as entropy (both in classical and quantum Shannon theory), our no-go result means that a Shannon
theory of general quantum processes will not possess a natural rule for the composition of resources.

1. Introduction

Experimental tests with elementary quantum systems, most notably Bell tests, radically challenge the very
notions of physical reality and cause-effect relations [ 1, 2]. Notwithstanding such fundamental novel effects,
quantum mechanics still assumes a definite causal order of events. Namely, given two events, i.e. two operations
performed locally in two quantum laboratories, say A and B, we always assume that they are either time-like
separated, hence, A cannot signal to B or vice versa, or they are space-like separated, hence, they cannot signal in
either direction.

Motivated by the problem of quantum gravity, operational formalisms have been proposed for computing the
joint probabilities for the outcome oflocal experiments, without the assumption of a fixed space—time background
[3—8]. Process matrices [6] are introduced as the most general class of multilinear mappings oflocal quantum
operations into probability distributions. The process matrix formalism provides a unified description of causally
ordered quantum mechanics (quantum states and quantum channels), but also includes experimentally relevant
non-causal processes such as the quantum switch [7, 9-14]. Furthermore, the formalism predicts novel and
potentially observable phenomena, such as the violation of so-called causal inequalities [6, 14—17].

Moreover, it has been proven that such processes are able to provide advantages for quantum information
processing tasks, both for computation and communication [7, 18-24]. One would, then, expect that a theory of
information can be developed also for processes. Such a theory would deal with, e.g., rates of information
compression and communication, i.e. a process-analog of the classical and quantum Shannon theory. A
fundamental assumption in classical and quantum Shannon theory [25, 26] is the availability of multiple
independent copies of a resource (for example a classical source of random variables, a quantum state, or a
channel), which is at the basis of the definition of information-theoretic entropy, i.e. Shannon or von Neumann
entropy. To be more concrete, in the example of Schumacher’s compression [25, 27], the optimal data
compression of n samples of an independent and identically distributed quantum source p into nS(p) + ¢
qubits (with § — 0 for n — 00), and the subsequent transmission, can be achieved only if the sender can act
globally on multiple copies of the quantum state in which the information is encoded.
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A natural question then arises, namely, whether a process matrix can be understood as a resource available in
multiple (possibly identical) copies to experimenters, similarly to the example of Schumacher’s compression
above. Answering this question will provide us with deeper insight into the nature of process matrices. For
instance, if we consider an experimental realization of a process, e.g. consisting of a sequence of optical elements
as in photonic experiments [10, 11], one can easily imagine that it is possible to create two identical copies of the
setup, and share them among the two parties. Alternatively, if one imagines that a process matrix does not only
represent an experimental setup, but also the space-time structure [28-30], then it is harder to imagine how two
‘copies of spacetime’ may be shared between the two parties. More generally, such a composition rule should not
be only about identical copies, but it should also allows us to combine different processes.

Itis important, at this point, to distinguish two different scenarios and their corresponding composition
rules. On the one hand, one may simply ask what is the rule for composing different processes independently,
with the requirement that experimenters act locally on each copy of the process; this rule is given by the tensor
product. On the other hand, going back to the example of Schumacher’s compression protocol, one may require
that a single experimenter (or many experimenters for multipartite systems) has access to multiple copies of a
process, in order to perform a protocol that involves global operations. We will see that the latter notion is
incompatible with the definition of a process.

For quantum states, quantum channels, or for any collection of processes with the same definite causal order
[31, 32], the parallel composition can be described by the tensor product. However, it is known that a parallel
composition of process matrices via the tensor product can fail [33], as the resulting process matrix contains
causal ‘double-loops’ [6], which give rise to the ‘grandfather paradox’, or equivalently, to unnormalised
probabilites.

In this work, we show that under weak assumptions (bilinearity, every output is a valid process matrix,
reduction to the usual tensor product for definite causal structure) there exists no composition that allows the
experimenters to have access to multiple shared processes. This result means that many information theoretic
protocols relying on many copies of a resource have no straightforward generalization to process matrices.

2. Preliminary notions

The most general operation that can be performed on a quantum system is represented by a quantum
instrument, namely, a collection { M, }, of completely positive trace-nonincreasing maps that sum up to a trace-
preservingmap M = 3 M,. An operation represented by the instrument { M, }, will give an output a with
probability P(a) = tr[M,(p)] and transformation of the state p — M, (p) /P (a). We admit the possibility of
an input x, and label the corresponding operations as { M| }4,«. Such maps can be represented as matrices via
the Choi-Jamiotkowski isomorphism [34, 35]

Ma|x — alx = Eh) <j|AI & Malx(|i> <j|)AO' (1)
ij
We will call M, the Choi matrix of M, *.Consider a set of local operations, i.e. Choi matrices, {MaA|x }ax and
{Mﬁ » Ib,y» associated with Alice’s and Bob’s laboratories, where A denotes Alice’s input-output space

Ha, ® Ha,»and similarly for B. A process Wis understood as the most general linear mapping of such
operations into probabilities, which can be represented using the trace inner product as

plablxy) = t[(MJ}, ® Mji,)W'], 2

where T denotes the transposition in the computational basis. A visual representation of this probability rule is
givenin figure 1. In order to obtain valid probabilities, i.e. non-negative numbers summing up to one, for
arbitrary operations {Mfl‘x Ja,x> {Mﬁ » Jby (including operations that involve shared entangled ancillary systems),
it can be proven [9] that the following constraints must be satisfied

W >0, 3

trtW = do = da,ds,, 4)
BiBoW = 4oBBo W, (5)
AAoW = A40BoW, (6)
W= g W+ AW — 4.8, W, @

Alternatively, one could define M, with a global transposition ¢, taken w.r.t. the {|ij) }; basis, as in [9]. This allows one to write the
process matrix associated to a quantum state p shared between the parties simply as p; ® lo, instead of p; ® 1o. We will not use this
convention here.
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AO“ “BO
Ma|m |74 Mb|y
AI“ “BI

Figure 1. Graphical representation of the probability rule equation (2).

where xW := Z—X ® tryW. The linear constraints in equations (4)—(7) can be written in a more compact form as
X
Ly(W) =W, (8

where Ly is the projector onto the subspace of operators in £(H,p) that satisfy equations (5)—(7). We will denote
such alinear subspace as Ly (L(H4p)). This projector enforces the normalization of probabilites, and can be
interpreted as preventing the paradoxes that would occur in processes with ‘causal loops’ [6]. It is also convenient
todefine W C L(Hap) as the set of matrices that satisfy the conditions in equations (3)—(7), and similarly W for
the spaces A’B' := Har ® Ha,' @ Hp ® Hpyr. If g, W = W, one can show that Bob cannot signal to Alice,
ie. p(alx, y) = p(alx, y') forall a, x, y, y’,wedenoteitas A < Bandwe say that the process is causally
ordered [9]. Similarly, the case 4, W = W corresponds to the opposite causal order and itis denotedas B < A.
If 4oB,W = W wehaveatthesametime A < Band B < A,then Wrepresentsabipartite quantum state and
we have no-signaling in both directions.

Similarly, in the case of N parties Al ..., AV, linear constraints can be written in the compact form [9]
Lyy(W):=1 N W =W, 9
[1 —TTa-A5+A(AH+]] A,’Ag)]
i=1 i=1

where the index i runs through the different parties. Notice thatif W = W! @ W2, thentheset {1, ..., N} canbe
splitas x; U x,, with x; N x, = @, where x; indexes the parties appearing in W*. Then

Ly(M@ W) = W@ W, <=
Wi =W and o =M o
[l- [T (—Ap+aiab)+ [T Al

i€X, i€x,

1- H (1—Aci)+A1iA(i))+ H AIiA(i)

i€x, i€y,

2.1. Examples

The process matrix formalism allows one to treat quantum states, quantum channels, and even situations where
the causal order is indefinite, in a unified way. For example, the process matrix associated to a quantum state p
can be described as a single party process matrix, as W = pt @ 140, The process matrix associated to N spatially
separated copies of the state is a N-partite process W = ]\, pAIi ® 146, where each of the A} and AL are
isomorphic. However, one could also consider the same W as a global single party process, with input Hilbert
space A; = []; A/, and output Hilbert space Aq = I1; Ab.

A quantum channel C: L(H 4,) — L(Hp,), connecting the output Hilbert space of Alice to Bob’s input
Hilbert space, can be described in process matrix language as W = C4oB1, where Cis the Choi matrix of the
channel C, as defined by equation (1). The process matrix describing N parallel uses of the channel C is simply
W= Hfi | CA0Bi, Again, this process can be considered as a 2N -partite process, or as a bipartite process with
Ao =1, Aband B; = [, Bj.

3. Composition rules

From the above considerations, it seems that one could simply take the tensor product as a composition rule to
obtain multipartite processes representing multiple independent copies of a resource. In fact, equation (10)
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A

Figure 2. The tensor product compostion rule (W, W) = W ® W'.Here AA’ isa composite party that can perform general
quantum operations £(H a{) — L(Hagap)>and similarly for BB'; the corresponding probabilities are given by equation (2). We
shall show that this composition rule does not satisfy all requirements that we demand on such a rule.

]

Figure 3. The tensor product compostion rule (W, W’) = W ® W’ does not produce valid processes for all choices of Wand W'.
Here the process W corresponds to Alice receiving a state p, with an identity channel connecting her output system to Bob’s input; W'
is the same thing with the order of the parties reversed. The specific choice of local maps (X being the Pauli-X unitary gate) have zero
probability under the ‘generalized Born rule’ equation (2), instead of one, as it should be for deterministic operations.

implies that whenever the linear constraints are satisfied for both W, and W, then the corresponding
multipartite constraints will be satisfied for W; @ W.

The situation is different, however, if we require W; and W, to be shared by the same parties. To keep the
discussion simple, consider only two parties, Alice and Bob, who share two possible processes, W; € W and
W, € W. Wewant now to create the composite process 1 (W', W2) such that it is still a bipartite one, i.e. Alice
can access both the systems AjAg and A;’Ag’, and Bob both B;Bg and B;/Bg’. If both processes have the same
definite order, i.e. 4 oW, = Wiand »,'W, = W5, or the analogous condition with Bo, Bo’, then, we know from
standard quantum theory that the right operation for composing such processesis W; @ W. This composition
rule is represented in figure 2. One can easily prove that whenever the two processes do not have the same
definite causal order, then Ly (W! ® W?2) = W! ® W2, where Ly is taken with respect to the bipartition
(AA’, BB') [33]. For instance, consider the process

wWe W, withW:%(WAfB+WBfA) (11)

then, it is sufficient to check directly the violation of equation (7) with respect to the bipartition (AA’, BB),
namely, W ® W = 5 g (W R W) + 4.4, (W® W) — A a.Bos, (W ® W). This problem s illustrated in
figure 3, where two processes W, W' corresponding to channels in different directions can be seen tolead to a
‘loop’, and to unnormalised probabilities. It is then natural to ask whether the tensor product can be replaced
with another composition rule.

One may, however, argue that it is in principle possible to define more general composition rules that take
this problem into account. For instance, one could take the tensor product and then ‘project’ back the
corresponding operator onto the space of valid processes, or one could first decompose the process into a linear
combination of processes in a definite order, then take the tensor product of each term and then recombine
them. There are infinitely many possible recipes to define a composition rule; an abstract prescription for
general composition rules is provided in [36, 37]. In the following, we will ask three reasonable and physically
motivated requirements and show that there is no way of satisfying all three.
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To define our composition rule i, we may ask the following minimal requirements:

R.1 (W, Wy)isavalid process w.r.t. the bipartition (AA’, BB'), for W; € W, W, € W (validity).
R2 p(W, W) = W, @ Whif W, € W, W, € W, and W, W; are in the same order, i.e. (4, W, = W and
Ao W = Wy), 01 (5, W) = Wiand /W, = W) (consistency).

R.3 (Wi, Wy)is convex linear in both arguments (convex linearity);

Requirement R.1 is needed for the composition of two processes to still belong to a bipartite scenario, i.e. where
Alice has access to both systems AA’, and Bob to BB'. R.2 is a consistency condition, i.e. the case of definite order
should coincide with standard quantum theory. R.3 can be derived by requiring that our composition is well-
behaved with respect to statistical mixtures, i.e. classical randomness, as explained in appendix A.

It will be interesting to first consider a weaker assumption than R.1, because it will help us to single out the
usual mathematical tensor product as a composition rule:

R.1 pu(W, W) > 0for Wy € W, W, € W (positivity);

Assume that (4 is a composition rule satisfying R'.1 (or R.1), R.2, R.3. Then there is a unique real-linear extension
pl that satisfies = (W, Wy) = (W, Wa),forall W, € W, W, € W. By construction this extension satisfies:

R.3  p(W;, W,)isreallinear in both arguments (linearity);

For the linear extension, we only demand R.1’ (or R.1) for process matrices as inputs, so it will trivially continue
to be satisfied. As R.2 itselfis a (bi)linear condition, the linear extension will satisfy it even when it is extended to
the linear span of process matrices:

R.2 p(W, Wp) = Wy @ Wy if Wi € Ly (L(Hap)), Wa € Ly (L(Harp)), and Wi, Wi satisty (4, W1 = W,
and 4 W, = Wh), or (3, W = Wiand 5 /W, = W,) (consistency)

Details can be found in appendix A.
With our axioms, we will be able to prove

Theorem 1. The only function satisfying R”.1, R’.2, R".3is n(W;, W5) := W @ W,

Theorem 1 can be applied to the linear extension !, implying that (W, W5) = W, ® W, and from that it
will follow

Theorem 2. There exists no function satisfying R.I-R.3.

In particular, theorem 1 will imply that for the multipartite case the choice of the composition rule is unique.
We will prove theorem 1 for the simple case of local systems consisting of n-qubits, i.e. with local dimension 2"
foreach one of Aj, Ay/, ..., Bo, Bo', the general proof can be found in appendix B. Given theorem 1, for the
proof of theorem 2 it is sufficient to use the result of [33], or the example in equation (11).

First, we need the following

Lemma 1. Given A;, A, Hermitian operators such that A) € Ly (L(Hap)) and Ay € Ly (L(Ha'pr)), and letpbea
composition rule satisfying R”.1-3. Then j1(A;, Ay) = u(Ay, A)) and || (A;, A)| < [|A @ Ayl

Proof. For A Hermitian, its norm can be written as: [|A|| = min {\ |-l < A < Al}. Consider
Ay € Ly(L(Hyp))and Ay € Ly (L(Harp)) Hermitian and with \; = ||A;||fori = 1,2. We define

WE=NL£ A, W= \l=+A, (12)
which are valid processes, up to a normalization factor, on the spaces AB and A’B’. We then have

< M(W1+) W2+) + M(Wl_) WZ_)

0 5 = )\IAZ}I + ,LL(AIJ AZ)J
T - Wt
0 < LV W) ; EW Wo) oy = Ay, A, (13)
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which implies 11 (A}, A)) = (A1, Ay) and || (A, Ay)|] < A\ . Inthe above, we used R'.1 for positivity, then
R’.3 to split the different terms, and finally, R.2’ to take the identity out of . O

For the following, we need to specialize the form of the operator A; and A,. We define the set of tensor
products of either traceless operators or the identity as

PTIpp :== {M = X}Lh ® Xﬁo ® X§I ® Xgo IM € Ly (L(Hap)), X' identity or traceless}, (14)

and analogously for A’B’. For M € PT1,p, an operator of the form 1 + M is, up to normalization, a causally
ordered process. With the above definition, we prove the following

Lemma 2. Let 1 be a composition rule satisfying R”.1-3, and let M € PTlygand N € PT1,p be Hermitian
operators with eigenvalues in the interval [ — 1, 1]. Given an eigenvector |k) of M with eigenvalue (—1)* and an
eigenvector | j) of N with eigenvalue (—1)J, we have

pM, N)Ik, j) = (=D, j) 15)

Proof. To prove the lemma, it is sufficient to consider the (unnormalized) processes Wlk =14 (—D*'Mand
Wi =1+ (—1)/TIN.ByR'.2, u(1, ) = 1 ® land (M, 1) = M ® 1,since for M € PTly, either 4, M = M
or p,M = M. Then

p(WE Wi =1+ (=DM @ 1 + (=111 ®@ N 4+ (=¥ (M, N). (16)
byR’.2and R.3’, and finally, by R’.1

0 < (k jl p(W WDk, j) =1 — 1 — 1+ (=D)/*R(k, jl p(M, NIk, j), (17)

which implies 1(M, N)|k, j) = (=1)/ * K|k, j),since || (M, N)|| < 1,bylemma 1. O

A straightforward corollary oflemma 2 is that (M, N) = M ® N whenever M, N have eigenvalues only
in {—1, 1}. Bylinearity, this is enough to prove theorem 1 for all processes defined on n-qubit systems (i.e. local
dimension 2") since we have a basis of operators, given by tensor products of Pauli matrices and the identity, that
satisfy the assumptions. The same reasoning can be extended to arbitrary dimensions, see the details in
appendix B.

4. Discussion and conclusions

In this letter, we considered the parallel composition of process matrices. As the tensor product is known to lead
to invalid process matrices, we investigated whether there is another map that can describe this parallel
composition. We only asked for three weak desiderata: First of all, in contrast to the usual tensor product, it
should always result in a valid process matrix. Furthermore, it should reduce to the familiar tensor product in the
case of definite causal order. At last, we demanded bilinearity for compatibility with the interpretation of convex
mixtures as statistical mixtures. However we have seen that even those reasonable desiderata are incompatible
with each other.

Our results imply that an information theory of general quantum processes cannot rely on the assumption
that multiple independent processes can be shared between two (or more) parties. In information theory, it is
typical to assume that many independent samples of a random source, many independent uses of a channel, etc
are available, and that agents can perform global operations on many independent copies of the resource; this
will not be possible in an information theory of general quantum processes. Rather, these results suggest that the
proper setting for defining information-theoretic quantities such as entropies, capacities, etc, for process
matrices is single-shot information theory [38—40].

One can infer from the main proof that even the case of two channels with opposing signaling direction will
lead to a contradiction, which is perhaps unsurprising in the usual case of quantum mechanics on a fixed
background spacetime. Indeed, suppose that an event A is in the causal past of an event B, and that A’ isin the
causal future of B’. Our desiderata that A and A’ correspond to the same party can be interpreted as requiring
that the events A, A’ occur at the same space-time point p. This could be the case, but then B must be in the
future light-cone of p, while B’ mustbe in it’s past light-cone. It is thus impossible to satisfy the requirement that
Band B’ also occur at the same spacetime point.

Therefore any composition rule for process matrices must take care of removing the two-way signaling
terms, whose impossibility has a clear interpretation as discussed above. We have shown that there is no linear
way of doing so, if we ask for that our composition rule reduces to the usual tensor product in the case of two
processes with the same definite causal order.
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However, there might exist reasonable nonlinear composition rules, in the cases where processes have a
concrete physical interpretation. A meaningful way to define an event for the composite party AA’ is by the
‘simultaneous’ entering of both systems H,, and Hy in alocalized laboratory, and similarly for BB'. There can
be a probability that the systems do not enter the laboratories simultaneously, in which case it is necessary to
post-select on the runs of the experiment where this was indeed the case. Since the post-selection probability
depends on the two processes that we wish to compose, the map will be nonlinear. An important issue with such
a post-selected composition map for information-theoretic applications is that the parallel composition of
resources is usually a ‘free operation’, while in the post-selected case it would have a probability of failure.
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Appendix A. Linearity and convex linearity

In this appendix, we discuss convex-linearity and the linear extension of convex maps. First, let us argue why
convex-linearity is a reasonable physical assumption. In operational approaches to physical theories [41, 42],
one studies the probabilities that can be obtained from an abstract set of preparations and measurements. Given
two preparations o, and (3, there exists another preparation -y that consists of preparing « with classical
probability p, and preparing 5 with probability (1 — p). The probability for any measurement on yis the
weighted sum of the probabilities associated with preparations v and (3. If we associate ‘states’ with preparations,
this means that the state space is convex linear. For example, the density matrix formalism can be seen to arise by
adding classical uncertainty to the pure state formalism (i.e. kets in a Hilbert space). If one knows that with
probability p;, one prepares | j), then the density matrix is given by p = - i Dl 7} (jl. Another motivation for
allowing arbitrary probabilistic mixtures appears in [43, 44], where it is shown that it implies that optimal
compression is equivalent to linear compression.

The same interpretation can be used for process matrices: if the process matrices W;are prepared with
probabilities pj, then all expectations values (and by that all statistics) can be calculated with the effective process
matrix W = > W This can be seen by noting that p(a, b) = Tr[WM,gA) ® MISB)] isalinear functionin W
and applying the law of total probability.

Consistency demands that the composition rule p remains compatible with this interpretation of convex
mixtures: if the first process is W; with probability p;and the second process is W/ with probability pk/ , then the
effective process matrices determining the statisticsare W = 3, p. W and w =3, pk’ W{. The resulting
combined process would be 1 (3 PW kak/ WY). However, a different point of view would be to say: with
probabilities p;and pk’ we combined the processes W;and Wy to p(W;, W). So we prepared p(W;, W}) with
probability p, pk’ -Now; the effective process matrix is described by 3 p: P, 1 (Wj, Wy). As both points of view
describe the same operational scenario, they have to be consistent:

M[ZP]-W]') > p W;i] = > pip (W, W). (A1)
j k jk

Next, we explain in further detail how to extend a function satisfying R.1 (or R".1), R.2 and R.3 to a function
satisfying R.1 (or R".1), R”.2 and R’.3 on the linear span of all the process matrices.

Constructing the (bi)linear extension itselfis a standard procedure in quantum information theory and is
explained e.g. in [41, 42] for general abstract state spaces. Let S}, S, be two convex sets,andlet f: S, — S, bea
convex linear map. Let Vi, V; be the real vector spaces obtained respectively from S, S, by taking their linear
span. Then fcan be extended in the obvious way to a linear function f£: ¥ — V5, defined by
ff(Za + b) = M (a) + f(b),foralla, b € S, A € R.

However, we still need to check that the bilinear extension still satisfies our postulates: we do not change R.1
(orR'.1), i.e. we only demand the output to be a process matrix (or positive) if the inputs are process matrices.

7
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Therefore R.1 (or R'.1) trivially continues to hold as the extension does not change the function on inputs that
are process matrices.

Less trivial is how to generalize R.2. We will explicitly show that it still holds for the cases we need. Let us
assume we have operators Mj € Ly (L(Hap))and M, € Ly (L(Harp)) with 4 My = M and aMa = M, (or
alternatively s, M; = M, and s, My = Mp). Wenow show that

pE(My, My) = My @ M,. (A2)

By deﬁnition M, and M, are allowed terms satisfying the projective condition (8). Therefore there exist A, A,
such that 2 Z + A M, and + XM, are valid process matrices. Slmﬂarly F¥ itselfis a valid process matrix, with
no 31gnahng atall. Using R 2 forthe original ;¢ on valid process matrices, we find for the linear extension:

1 1 1 1 1 1 A
+ MM, = + MM, + A M I11l+ —M &1
(df o dl’) (dl ' ldl’) (dl ' 1) d[' d[dl/ dy !
Jl Jl >\1 Jl Jl )\1
S|t 2@l = — |+ M e L
(dl d]/) dp : (d; d]/) dp !

Therefore by bilinearity we find p£ (M;, 1) = M; ® land similarly uf (I, M) = 1 ® M,. Similarly, applying
R.2 to the process matrices dl + MM, and di + Ay M,, which have the same signaling direction, we obtain
1 T

1 1 1 1 1 1
+ MM, — + LM | = — 4+ MM, — + M ==— + MM || — + M| A3
( i M 0 2 2) M( 0 1My 0 2 z) ( a0 1 1) ( 0 2 2) (A3)

Collecting our results and using bilinearity on the left hand side of equation (A3) above, we finally see that
R’.2is satisfied:

pE (M, My) = My ® M. (A4)

Appendix B. Proof of theorem 1 in arbitrary dimension

In this appendix, we will extend the proof of theorem 1 to the case of arbitrary dimension. We start with the
following

Lemma3.Let M € PTlygand N € PTly p be Hermitian operators such that
kY = k)4, @ lka)a, ® lks)p @ |ka)p, isan eigenvectorforM, with eigenvalues given, according to the above
actorization, by the products A\, = ANV XD NXINGD, with \P € {—1, 0, 1}i = 1, 2, 3, 4, and, similarly,
y the p Y
17) = 1idar ® lix)aer @ 1js)sr @ |jy)n, is an eigenvector of N, with eigenvalue 1, = 77(1)77(2)77(3)77(4) with

ni.” e {—1,0,1}i =1, 2, 3, 4. Wethen have
pM, Nk, j) = Nenlk, j). (BL)

Proof. The cases Ay, 7; = +1areincluded inlemma 2. Let us consider the case M |k) = 0and N|j) = 0,the
case M|k) = N|j) = 0 canbe obtained in a similar way, by applying the same argument first to M, then to N.
Since Misin PTLyp, we can writeitas M = X}‘I ® X ﬁo ® X é’l ® X go. Let us now further assume

X'ki)a, = 0,and X' |k;)y = Ofori =2, 3,4,Y = Ao, By, Bo, in particular, this implies that |k;) are
eigenvectors for eigenvalues +1 for i = 2, 3, 4. We can then write:

X' =X+ [kl = [+ Di)((k + D) + (k4 Do)k + Dl = Jha)k]) = X"+ X", (B2)
where |(k + 1),) isavector orthogonal to |k;). Then X', X"!are both tracelessand X"!|k;) = |k;),
X"|k) = —|k). We thenhavethat M’ := X} ® X3 ® X3 ® X3 and M" = X[' ® X} ® X} ® X3,
areagain in PTI4p. Thus, bylemma 2
p(M, N)k, j) = pM" + M", N)|k, j) = p(M', N) [k, j) + p(M”, N)|k, j)
= M' ® N|k, j) + M" @ Nk, j) = 0. (B3)
Ifanother operator, say X, is zero on the corresponding eigenvector, say |k, ) 4., we can again repeat the

construction in equation (B2) to construct X’?, X" with +1, -1 eigenvalues and use again linearity and
lemma 2. Similarly, the same argument can be extended to all X’ and to N. O

To conclude the proof of theorem 1, it is sufficient to construct a basis of operators containing the identity
and where each element, except the identity, is traceless and with eigenvaluesin { —1, 0, 1}. Let H be a Hilbert
space with dimension d, and let {|k) }{_, be a basis for . The space of Hermitian operators on  is a real vector
space of dimension d°. We define the following operators
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Zi=li) (il —li+1){+1, 1<i<d-—1, (B4)
Xie =) (K + k) (jl, 1<j<k<d, (B5)
YVi=i(lj) (K — K (i, 1<j<k<d, (B6)

which are traceless, hermitian and with eigenvaluesin { —1, 0, 1}. The Xj; and Yj; are also known as part of an
operator basis called Generalized Gell-Mann matrices [45]. For completeness we now show that, together with 1,
the above set of matrices form a basis for the space of Hermitian operators on H. Itis clear that the { X3} and
{Yji} span the space of Hermitian operators whose diagonal is zero in the |k) basis. All that remains to be shown is
that {1, Z;} forms abasis for the space of diagonal real matrices, which we prove by expressing the basis {|k) (k| }
in terms of the new basis {1, Z;}.

Noticethatforl <i<d—1

j=d—-1
> Zi=1i) (il — |d)(dl, (B7)
j=i
and also that
ZJZ = ZIJ (il = @ = D) (d| = 1 — d|d) {d|. (B8)
j=1
Combining the above two expressions gives
141
|@<=4——Zﬂ (B9)
N 1 - ] «—. .
|l><1|:EIl—|—ZZj—EZ:1]Zj, 1<i<d, (B10)
j= i=

which concludes that {1, Z;, X, Yj}isabasis for the space of Hermitian operators of H.

We can use the above construction to build a basis for L(H 4, ® Ha, ® Hp, @ Hp,) consisting of tensor
products of local Hermitian operators whose eigenvalues are in { —1, 0, 1}. We then remove from this basis all
the terms that do not satisfy the linear constraints Ly. This gives us a basis for the linear space of valid Ws, which
is contained in PT1,5. We will call this basis simply { M; };c;, and by lemma 3, we have

u(M;, Mj) = M; @ M;. (B11)
We can then decompose any pair W, W' as

W=1+> M, W =1+ dM, (B12)

and apply p, namely

pW, W)=1+>cMi@1+1® > diM; + > cid;ju(M;, M)
i i ij
=1+ eM1+1® > diM;+ > cidiM; @ Mj = W® W/, (B13)
i i ij

which concludes the proof of theorem 1.
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