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Trieste Junior Quantum Days

A glance in research: where we stand and future challenges

The workshop will gather young researchers working in quantum mechanics and its applications: PhD
students and PostDocs from local and nearby institutes will present their research activity. The talks will
be pedagogical and easily accessible to master students.

Topics include: quantum information, entanglement, open quantum systems, quantum foundations,
many-body physics, quantum thermodynamics, equilibrium & non-equilibrium physics, mathematical
methods for quantum mechanics.

The program can be found at the Workshop website: www.tequantum.eu/?g=TriesteQuantumDays/2018

Invited Speakers Scientific Committee

Vincenzo Alba (SISSA) Angelo Bassi (UniTS-INFN)

Linda Anticoli (University of Udine) Fabio Benatti (UniTS-INFN)

Matteo Carlesso (University of Trieste) Alessandro Michelangeli (LMU Munich)
Andrea Colcelli (SISSA) Andrea Trombettoni (CNR-IOM Trieste)
Matteo Gallone (SISSA)

Giulio Gasbarri (University of Trieste) Local Organizers

Giacomo Gori (University of Padova) Matteo Carlesso (UniTS)

Stefano Marcantoni (University of Trieste) Matteo Gallone (SISSA)

Silvia Pappalardi (SISSA, ICTP)

Davide Pastorello (University of Trento)

Angelo Russomanno (Scuola Normale di Pisa and ICTP)
Raffaele Scandone (SISSA)

The Trieste Junior Quantum Days are sponsored by Where
==() Testing the large-scale Auditorium - C11 building,
o— ‘ " limit of Department of Chemistry,
.,f"(‘ R P T AR University of Trieste,

A ' Via Licio Giorgieri 1, Trieste
When
May 11% and 18%, 2018

FOUNDATIONAL QUESTIONS INSTITUTE 14:15-19:15pm

For information: matteo.carlesso@ts.infn.it



Trieste Junior Quantum Days

A glance in research: where we stand and future challenges

Program

May 11%
14:15 Welcome
14:30 Matteo Carlesso (University of Trieste)
Can we understand if gravity is quantum?
15:10 Linda Anticoli (University of Udine)
Model Checking Recursive Quantum Protocols
15:50 Andrea Colcelli (SISSA)
Deviations from Off-Diagonal Long-Range Order and Mesoscopic Condensation in 1D
Quantum Systems
16:30 Coffee Break
17:00 Silvia Pappalardi (SISSA, ICTP)
Scrambling and entanglement spreading in regular chaotic long range spin chains
17:40 Giacomo Gori (University of Padova)
On the performance of a MatterWave based gyroscope
18:20 Angelo Russomanno (Scuola Normale di Pisa and ICTP)
Floquet time crystal in the Lipkin-Meshkov-Glick model
19:00 Closing

May 18"
14:15 Welcome
14:30 Matteo Gallone (SISSA)
The touchy business of formal computations
15:10 Giulio Gasbarri (University of Trieste)
General Galilei covariant Gaussian maps and macroscopicity measure
15:50 Vincenzo Alba (SISSA)
Entanglement and thermodynamics after a quantum quench in integrable systems
16:30 Coffee Break
17:00 Raffaele Scandone (SISSA)
Non-linear Schroedinger equation with point interactions
17:40 Davide Pastorello (University of Trento)
Geometry of Quantum Mechanics in complex projective spaces
18:20 Stefano Marcantoni (University of Trieste)
Quantum Model for Impulsive Stimulated Raman Scattering
19:00 Closing
20:00 Dinner



Abstracts

Vincenzo Alba (SISSA)
Entanglement and thermodynamics after a quantum quench in integrable systems

Entanglement and entropy are key concepts standing at the foundations of quantum and
statistical mechanics, respectively. In the last decade, the study of quantum quenches
revealed that these two concepts are intricately intertwined. Although the unitary time
evolution ensuing from a pure initial state maintains the system globally at zero entropy,
at long time after the quench local properties are captured by an appropriate statistical
ensemble with non zero thermodynamic entropy, which can be interpreted as the
entanglement accumulated during the dynamics. Therefore, understanding the post-
quench entanglement evolution unveils how thermodynamics emerges in isolated
quantum systems. An exact computation of the entanglement dynamics has been
provided only for non-interacting systems, and it was believed to be unfeasible for
genuinely interacting models. Conversely, here we show that the standard quasiparticle
picture of the entanglement evolution, complemented with integrability-based
knowledge of the asymptotic state, leads to a complete analytical understanding of the
entanglement dynamics in the space-time scaling limit. Our framework requires only
knowledge about the steady state, and the velocities of the low-lying excitations around
it.

Linda Anticoli (University of Udine)
Model Checking Recursive Quantum Protocols

With the growing interest in the fields of quantum computation and information, the
possibility of expressing quantum algorithms, protocols and even quantum dynamics by
using an high-level specification language has become crucial. For this reason, we have
witnessed the birth of different higher level formalisms allowing to define and simulate
automatically formal properties of such protocols, which work by abstracting from low-
level physical details. Nevertheless, with the possibility of "programming" quantum
protocols comes the need to formally verify them, in order to test that both the
specification and the protocols themselves are error-free. To this extent, formal methods
such as temporal model checking has been investigated and extended to the quantum
domain. We will show our work on Entangle, an integrated framework which provides the
possibility to define and automatically verify recursive quantum protocols.

Matteo Carlesso (University of Trieste)
Can we understand if gravity is quantum?

The recent development of interferometric and optomechanical systems gave the
opportunity to experimentally approach the long-standing debate whether the gravity
has a classical or a quantum intrinsic nature. | will present some of the recent proposals
that have been made, highlighting their strong and weak points towards a possible
solution.



Andrea Colcelli (SISSA)
Deviations from Off-Diagonal Long-Range Order and Mesoscopic Condensation in One-
Dimensional Quantum Systems

A quantum system exhibits off-diagonal long-range order (ODLRO) when the largest
eigenvalue A, of the one-body-density matrix scales as Ao~N, where N is the total number
of particles. Putting A0~N° to define the scaling exponent C then C=1 corresponds to
ODLRO and C=0 to the single-particle occupation of the density matrix orbitals. When
0< C <1, C can be used to quantify deviations from ODLRO. In this talk | will present the
study of the exponent C in a variety of one-dimensional bosonic and anyonic systems.

Matteo Gallone (SISSA)
The touchy business of formal computations

Quantum mechanics requires to deal with unbounded self-adjoint operators on Hilbert
spaces which means, in practice, to consider both their action and their domains.
Despite that, domain issues are often regarded as "a minor problem". In this talk | will
recall the main definitions, | will present with basic examples what can go wrong when
one neglects this "minor issue" and | will discuss some more challenging problems
including physical Hamiltonians that are central in my research activity: relativistic
hydrogen atom, singular potentials and positronium.

Giulio Gasbarri (University of Trieste)
General Galilei covariant Gaussian maps and macroscopicity measure.

Space-time symmetries in open quantum systems have been fully analyzed only in the
special, but very important, case of a Markovian, completely positive (CP) and trace
preserving (TP) dynamics and the structure of the dynamics fully characterized
characterized by Holevo.

This characterization play a major role in the description of several important physical
phenomena such as environmental decoherence and relaxation phenomena.
Furthermore, it is also relevant for the foundations of quantum mechanics, where an
intrinsic non-unitary dynamics is postulated to solve the measurement problem, the black
hole information paradox, or to combine principles of general relativity with quantum
mechanics.

Although the assumption of Markovianity is often well justified, recent technological
advances have led to investigating several phenomena exhibiting memory effects, e.g.
ultra fast chemical reactions, side band cooling and light harvesting in photosynthesis.
In this talk we present a complete characterisation for effective non-Markovian Gaussian
maps that are Galilei covariant.

We further show how this result can be used to discuss measures of macroscopicity
based on classicalization maps, specifically addressing dissipation, Galilean covariance
and non-Markovianity.



Giacomo Gori (University of Padova)
On the performance of a MatterWave based gyroscope

We discuss the sensitivity of a guided matter wave interferometer built to measure
rotation. We consider the effect of the interaction and temperature on the instrument
with different interferometric schemes.

Stefano Marcantoni (University of Trieste)
Quantum Model for Impulsive Stimulated Raman Scattering

Impulsive Stimulated Raman Scattering (ISRS) is a process in which a light pulse is
inelastically scattered by a solid sample, exciting vibrations in the latter. This kind of
light-matter interaction is usually investigated using time-resolved spectroscopic
techniques, in particular pump-probe experiments in which a first intense light pulse, the
pump, excites vibrational modes in the crystal and a second less intense light pulse, the
probe, is used to test the sample dynamics.

We present a fully-quantum theoretical model that we have recently developed for the
description of ISRS in the context of pump-probe experiments. Some preliminary results
of this model are validated with measurements performed on quartz.

Silvia Pappalardi (SISSA, ICTP)
Scrambling and entanglement spreading in regular chaotic long range
spin chains

We study scrambling, bipartite and multipartite entanglement dynamics in regular and
chaotic long range spin chains, with a well dened semi-classical limit. We show that
scrambling is a full quantum phenomenon, different from entanglement dynamics. It is
characterized by a first semiclassical growth (up to the Ehrenfest time), followed by a
fully quantum non-perturbative regime, symmetric around the recurrence time. While
entanglement is a state dependent property, we associate scrambling with the growth of
the operator's support.

Davide Pastorello (University of Trento)
Geometry of Quantum Mechanics in complex projective spaces

The talk will be focused on the geometric Hamiltonian formulation of quantum mechanics
where the projective Hilbert space (as a K&hler manifold) plays the role of phase space.
Within such a framework quantum observables are represented by phase space
functions, quantum states are described by Liouville densities (phase space probability
densities), and Schr@dinger dynamics is induced by the flow of a Hamiltonian vector field
w.r.t. a natural symplectic structure. Then | will discuss how this viewpoint leads to a new
approach to quantum control theory based on the Riemannian structure of the projective
space.



Angelo Russomanno (Scuola Normale di Pisa and ICTP)
Floquet time crystal in the Lipkin-Meshkov-Glick model

In this talk | will discuss the existence of time-translation symmetry breaking in a kicked
infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick
model. This Floquet time crystal is robust under perturbations of the kicking protocol, its
existence being intimately linked to the underlying Z_2 symmetry breaking of the time-
independent model. | show that the model being infinite range and having an extensive
amount of symmetry-breaking eigenstates is essential for having the time-crystal
behavior. In particular, | discuss the properties of the Floquet spectrum, and show the
existence of doublets of Floquet states which are, respectively, even and odd
superposition of symmetry-broken states and have quasienergies differing of half the
driving frequencies, a key essence of Floquet time crystals. Remarkably, the stability of
the time-crystal phase can be directly analyzed in the limit of infinite size, discussing the
properties of the corresponding classical phase space.

Raffaele Scandone (SISSA)
Non-linear Schroedinger equation with point interactions

A central topic in mathematical physics is the rigorous investigation of many body
quantum systems subject to very short range interactions. The dynamics of such systems
can be efficiently described by non-linear Schroedinger equations with singular
potentials. In this talk, | will discuss a recent result on the well-posedness of the Hartree
equation with a point interaction in R, in a suitable class of singular Sobolev spaces. |
will also discuss various open problems.
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Trieste Junior Quantum Days: a big success for the second edition

Quantum mechanics draws big attention, as proved by the success of the workshop
coordinated by Angelo Bassi (UniTs-INFN), Fabio Benatti (UniTs-INFN), Alessandro
Michelangeli (LMU Munich) and Andrea Trombettoni (CNR-IOM Trieste) and, as local
organizers, Matteo Carlesso (UniTs-INFN) e Matteo Gallone (SISSA).

On Friday, May 11, the second edition of the workshop Trieste Junior Quantum Days, was
held. The event is conceived as a platform for young students and researchers to discuss
on research matters in quantum physics. This year’s edition received an even more
enthusiastic response compared to the 2017 edition, with a tripled number of participants
and a significant presence of Master students, not only in Physics but also in Chemistry.
The junior nature of the event has to be highlighted: speakers were PhD or young Postdocs
of the major academic institutions of the Region and beyond: The universities of Trieste
and Udine, the International School for Advanced Studies (SISSA), the International Centre
for Theoretical Physics (ICTP) and the University of Padua.

Compared to the previous edition, the first day of the Trieste Junior Quantum Days 2018
attracted attention and was massively attended by participants beyond the regional borders
and Triveneto, proving the national and international interest raised by the workshop.
Among the represented institutions there were: University of Milano-Bicocca, University La
Sapienza of Rome, University of Bologna, University of Bari Aldo Moro and LMU of Munich
(Germany).

The second date of the Trieste Junior Quantum Days is Friday, May 18, with a new round
of six speakers. For more information, please visit http://tequantum.eu/.
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A glance in research: where we stand and future challenges
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Trieste Junior Quantum Days

A glance in research: where we stand and future challenges

14:30 Matteo Carlesso (University of Trieste) Can we understand if gravity is quantum?
15:10 Linda Anticoli (University of Udine) Model Checking Recursive Quantum Protocols
15:50 Andrea Colcelli (SISSA) Deviations from Off-Diagonal Long-Range Order and

Mesoscopic Condensation in 1D Quantum Systems
16:30 Coffee Break

17:00 Silvia Pappalardi (SISSA, ICTP) Scrambling and entanglement spreading in regular
chaotic long range spin chains

17:40 Giacomo Gori (University of Padova) On the performance of a MatterWave based
gyroscope
18:20 Angelo Russomanno (Scuola Normale di Floquet time crystal in the Lipkin-Meshkov-Glick
Pisa and ICTP) model
19:00 Closing
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Trieste Junior Quantum Days

A glance in research: where we stand and future challenges

14:30 Matteo Gallone (SISSA) The touchy business of formal computations

15:10 Vincenzo Alba (SISSA) Entanglement and thermodynamics after a quantum
quench in integrable systems

15:50 Raffaele Scandone (SISSA) Non-linear Schroedinger equation with point
interactions

16:30 Coffee Break

17:00 Davide Pastorello (University of Trento) Geometry of Quantum Mechanics in complex
projective spaces

17:40 Stefano Marcantoni (University of Trieste) Quantum Model for Impulsive Stimulated Raman
Scattering

19:00 Closing
20:00 Dinner
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Trieste Junior Quantum Days

A glance in research: where we stand and future challenges

[ www.tequantum.eu/?q=TriesteQuantumDays/2018 ]

~—~
( FOUNDATIONAL QUESTIONS INSTITUTY

Best Speaker 18th May 2018 Leave a feedback

What di you like about the workshop? (The organization, the lecture
room, the time given to the speakers..)

m What did you not like about the workshop? (The organization, the lecture
Q > room, the time given to the speakers..)

[ Vote for the best speaker! ]

What would you like to see for next year's edition? (More/less days,

longer/shorter talks..)
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Can we understand if gravity is
gquantum?

Trieste Junior Quantum Days
11t May 2018

Matteo Carlesso (University of Trieste & INFN)



Who am |?

Former student (Bachelor, Master and PhD) and now PostDoc @ University of Trieste

Research Activities » MC and A. Bassi.

Physics Review A, 95, 052119 (2017).
Open Quantum Systems « MC and A. Bassi.

Physics Letters A, 380, 31-32, pp. 2354 — 2358 (2016).
* Decoherence models * S. McMillen, M. Brunelli, MC, A. Bassi,

H. Ulbricht, M.G. Paris and M. Paternostro.
Physical Review A, 95, 012132 (2017).

* MC, A. Bassi, P. Falferi, and A. Vinante.
Physical Review D, 94, 124036 (2016).

* A.Vinante, R. Mezzena, P. Falferi, MC and A. Bassi.
Physics Review Letters, 119, 110401 (2017).

* MC, M. Paternostro, H. Ulbricht, A. Vinante and A. Bassi.
ArXiv 1708.04812 (2017)

* Collapse models




Who am I?

Former student (Bachelor, Master and PhD) and now PostDoc @ University of Trieste

Research Activities « MC, M. Paternostro, H. Ulbricht and A. Bassi.
ArXiv 1710.08695 (2017)

Open Quantum Systems Gravitational Decoherence

" | Bassi, Grossardt, Ulbricht,
Decoherence models Class. Quantum Grav. 34, 193002 (2017)

Review on theoretical and experimental

* Collapse models
P gravity-related works

Several other works, see next slides




Can we understand if gravity is quantum?

Feynman The Role of Gravitation in
What is the gravitational field d e
atist .e gravitational fie ge'n'erate Report from the 1957 Chapel Hill
by a massive quantum superposmon? Conference

* Is it the superposition of the two gravitational fields generated by the two
terms of the superposition?

* Isit the sum of the two gravitational fields, as predicted by the Schroedinger—
Newton equation and perhaps by any theory, which keeps gravity

fundamentally classical?
2 2
I R)) _( B or oo /dr, () )W,t)

‘ ‘ ot 2m 7’ — 7|
/ / Diosi L 1984 Phys. Lett. A 105

Penrose R 1996 Gen. Relativ. Gravit. 28 581-600




Can we understand if gravity is quantum?

* Is it the superposition of the two gravitational fields generated by the two
terms of the superposition?

Gravitational field is in a superposition;
Quantum scenario

* Isit the sum of the two gravitational fields, as predicted by the Schroedinger—
Newton equation and perhaps by any theory, which keeps gravity
fundamentally classical?

Gravitational field is equally distributed on the superposition;
Classical scenario

We propose an experimental scheme to provide evidences in
favour or against the quantumness of gravity

E—



Previous experimental proposals

Gravity is quantum

2 Quantum syperposition

t
V, = ~Gmums [ gor, VLD

r] — 1o

Quantum probe

Gravity is classical

Ve, ——Gmlm /d3 [Py, ¢

e e r] — 13

| 2

T
"
4

Is Gravity Quantum?

The gravitational effect

M. Bahrami,"? A. Bassi,*? S. McMillen,® M. Paternostro,® and H. Ulbricht? is too small to be

ArXiv 1507.05733 (2015)

detected




Previous experimental proposals

The Role of Gravitation in
Physics
Report from the 1957 Chapel Hill
Conference Feynman

Classical and Quantum Gravity

10P Publishing
Class. Quantum Grav. 32 (2015) 165022 (24pp)

Probing a gravitational cat state

dol:10.1088/0264-9381/32/16/165022

C Anastopoulos'~ and B L Hu”

PRL 116, 161303 (2016) PHYSICAL REVIEW LETTERS s ok Ending .

Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators

Alessio Belenchia,"” Dionigi M. T. Benincasa."’ Stefano Liberati,"" Francesco Marin,>**
: 4 s
Francesco Marino, " and Antonello Ortolan

Is Gravity Quantum? 2015

M. Bahrami,'-? A, Bassi,!*? S. McMillen,? M. Paternostro,® and H. Ulbricht?

ArXiv 1507.05733 (2015)

PRL 119, 120402 (2017) PHYSICAL REVIEW LETTERS %5 SEPTEMBER 2017

Revealing Nonclassicality of Inaccessible Objects

; e 1 o 12 3 145
Tanjung Krisnanda, Margherita Zuppardo, ™ Mauro Paternostro,” and Tomasz Paterek

Witness gravity’s 2017
quantum side in the lab

Physicists should rethink interference experiments to reveal whether or not general
relativity follows classical theory, argue Chiara Marletto and Vlatko Vedral.

week ending

PHYSICAL REVIEW LETTERS 15 DECEMBER 2017

PRL 119, 240401 (2017)

Spin Entanglement Witness for Quantum Gravity

Sougato Bose,' Anupam Mazumdar,” Gavin W. Morley,” Hendrik Ulbricht,' Marko Toros,*
Mauro li’ahcn-losu'o.5 Andrew A, Geraci,” Peter F, Barker,' M. S. Kim,’ and Gerard Milburn’*

Kk end
PRL 119, 240402 (2017) PHYSICAL REVIEW LETTERS 15 DRCENBER 2017

Gravitationally Induced Entanglement between Two Massive Particles is Sufficient
Evidence of Quantum Effects in Gravity

C. Marletto' and V. Vedral'?



Gravity entangles masses

If entanglement is
measured, gravity ——»
IS quantum !

LOCC - Local Operation and
Classical Communication
cannot generate Entanglement

A classical ancilla cannot
entangle S; and S,

) ) -
e AL L SRt IR L O T ey S o S5 e
4 /‘ ; ! : PRL 119, 240401 (2017) PHYSICAL REVIEW LETTERS 15 DECEMBER 2017
I Sa | | N |
] 1
- ':1' O / S~ ! ; ~ : Spin Entanglement Witness for Quantum Gravity
|} 1 -~
] ]
' L.t R, shu.. | i L T> |R‘l> = S i Sougato Bose,' Anupam Mazumdar,” Gavin W. Morley,” Hendrik Ulbricht," Marko Toros,*
1! 1 L ~ >-r g Aup! Y. , b i
! I’ | \ : h()() : I’ ] \ : Mauro Paternostro,” Andrew A, Geraci,” Peter F, Barker,' M. S. Kim,’ and Gerard Milburn’*
] \ X:n
1 I ! ! ! ] I !
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) Sl : | Sed-” i week ending
1 : ” g i 7 i PRL 119, 240402 (2017) PHYSICAL REVIEW LETTERS 15 DECEMBER 2017
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e R ot w3 ] e o e __/_' _____________ ! Evidence of Quantum Effects in Gravity
2 C) C)
14 I 1 a l C. Marletto' and V. Vedral'*

Spin Correlation Measurements Certifying Entanglement




1798 — Cavendish probes Newton’s law




When Cavendish meets Feynman: A quantum torsion balance for testing the
quantumness of gravity 1) Cooling at low

Temperature and Pressure
Fr—

Matteo Carlesso,’?* Mauro Paternostro,®* Hendrik Ulbricht,® and Angelo Bassi''?

ArXiv 1710.08695 (2017)
3) Angular superposition 4) Decoupling spin-angular dof Spin 1 Nitrogen Vacancy ——

Nanorod .— 7
. 2) MW 1/2 pulse
- Spin superposition

Magnec grad_ient i\//\\//\/\/\/\

Quantum scenario 5) Detection

|’)/(I'1,t)|2
r; — 1o

V, = —-Gmimgy /d3r1 » No effect, the superposition holds




When Cavendish meets Feynman: A quantum torsion balance for testing the
quantumness of gravity 1) Cooling at low

Temperature and Pressure
Fr—

Matteo Carlesso,’?* Mauro Paternostro,®* Hendrik Ulbricht,® and Angelo Bassi''?

ArXiv 1710.08695 (2017)
3) Angular superposition 4) Decoupling spin-angular dof Spin 1 Nitrogen Vacancy ——

Nanorod
2) MW /2 pulse
Spin superposition

Manetic grad_ient i\//\\//\/\/\/\

Classical scenario 5) Detection
2 .
(r1, Attraction between the two parts
V,=—-Gmimso | d°rq [9(rs,t) - .y P
Yy — o of the superposition




Decoherence vs Gravitational effect
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Conclusions

A test of quantumness of gravity within reach of state-of-the-art technology

* Single self-probing system ' —Q

* No limitations in distances
* Gravitational interaction can be directly observed

 Superposition of torsional degrees of freedom
* Enhanced measurement precision

Bassi A et al., Class. Quantum Grav. 34, 193002 (2017)
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Model Checking Recursive Quantum Protocols

Linda Anticoli

Dept. of Mathematics, Computer Science and Physics - University of Udine, Italy.
School of Computing Science - Newcastle University, UK.

Model Checking Recursive Quantum Protocols 1/36



June 1996
Ariane 5 launcher failure

"Loss of information due to specification and design errors in the software of the inertial
reference system."

Model Checking Recursive Quantum Protocols 2/36



Motivations

Quantum information is more fragile than classical one

4

flaws in the design of quantum protocols and noise in their physical
implementation

Model Checking Recursive Quantum Protocols 3/36



Motivations

State of the art;

e Formal, higher—level specification of quantum algorithms
Quantum Programming Languages
- J. W. Sanders and P. Zuliani. "Quantum Programming” (2000)
- A. van Tonder. "A lambda calculus for quantum computation” (2003)

- A.S. Green, , et Al. "Quipper: A Scalable Quantum Programming
Language" (2013).

@ Formal verification of quantum algorithms
Quantum Model Checkers

- P. Mateus, et Al. "Towards model-checking quantum security
protocols" (2007)

- Y. Feng, et Al. "QPMC: A Model Checker for Quantum Programs
and Protocols" (2015)

Model Checking Recursive Quantum Protocols 4 /36



Motivations

Desiderata:

High-level formalisms allowing to define and automatically verify formal
properties of algorithms abstracting away from low—level physical details:

- L. Anticoli, et Al. "Towards quantum verification: From Quipper circuits to
QPMC" (2016)

- L. Anticoli,et Al. "Entang\e: A Translation Framework from Quipper
Programs to Quantum Markov Chains" (2017).

Model Checking Recursive Quantum Protocols 5/ 36



Preliminaries and Notation

Question 1
What is a quantum algorithm (or quantum protocol)?
4
Quantum Computation and Information
Question 2

What does model-checking mean?

4

Formal Methods in Computer Science

Model Checking Recursive Quantum Protocols 6 /36



Quantum Computation and Information — Remarks

Paradigm of computation concerned with computational tasks, and
information processing achieved through quantum mechanical systems.

Efficient solutions for classically hard problems

@ Integer Factoring n = loga N
- Classical Solution -> ~ exp[O(n*/3log?/3n)];
- Shor's Algorithm -> ~ O(n3);

@ Unsorted Database Search

- Classical Solution -> O(N);
- Grover's Algorithm -> O(N'/?);

Model Checking Recursive Quantum Protocols 7/ 36



Quantum Computation and Information — Remarks

Efficiency
@ Parallelism: linearity of space and operators;

o Interference: the states interfere deleting the “wrong" ones, while
increasing the probability of the desired outcome.

@ Correlations: non—local correlations between the outcomes of
measurements performed on different qubit strings.

Model Checking Recursive Quantum Protocols 8 /36



]
Qubit

Superposition of States

Quantum analogue of a classical bit. State of a 2-level system:

) = al0) + B[1)
where |a]? + 8] =1 and o, 3 € C

Quantum Register

Quantum analogue of a classical bit string composed by n—qubits:

[Vtor) = Y1) ® - ® [¢n)

allowing 2" superposed basis states.

Model Checking Recursive Quantum Protocols 9 /36



N
Quantum Circuit Model

Quantum Gates

Quantum counterpart of classical logic gates.
n qubits — quantum gates: 2" x 2" unitary operators.

Single Qubit Gates

=0 ) ol Y

Controlled Gates

O O o
o O~ O
_ O O O
o = O O

tipically used to create correlations.
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Quantum Circuits

Quantum algorithms are represented by quantum circuits in which the
computation is realised by the following steps.

@ State preparation;
@ Application of unitary operators;

© Measurement.

02

Figure: Quantum Coin Tossing Circuit.

Model Checking Recursive Quantum Protocols 11 / 36



-
Applications

Quantum Teleportation

Quantum information (qubits) is transmitted from a location to another by
means of classical communication and previously shared entangled couples
between sender and receiver.

Quantum Cryptography

Use of quantum effects to perform cryptographic tasks.
Measurement disturbs the data —> eavesdropper can be detected!

Refs:

C. H. Bennett, et Al. "Teleporting an Unknown Quantum State via Dual Classical and
Einstein-Podolsky-Rosen Channels"
C. H. Bennett, et Al. "Quantum cryptography: Public key distribution and coin tossing"

Model Checking Recursive Quantum Protocols 12 / 36



[ssues

Problem 1
Quantum circuits are low level descriptions of computation.

Problem 2
Quantum circuits are not Turing complete, no recursion.

Model Checking Recursive Quantum Protocols 13 / 36



Quantum Programming Languages

Solutionl

Quantum Programming Languages: abstract the computation from the
physical low—level detail to a human readable, and formally defined
high—level description.

@ Quantum pseudocode

o QCL

e Q Language

e qGCL

@ Quantum Lambda Calculus
@ Quipper

e LIQUi|)

Model Checking Recursive Quantum Protocols 14 / 36



|
Quipper

Functional programming for quantum computation.
o Based on Haskell;

@ The semantics of a Quipper program is given in terms of extended
quantum circuits;

o Allows to generate a graphical representation of the implemented
circuit, but not of quantum programs;

@ Provides three different of simulators.

A Quipper program is a function that inputs some quantum and classical
data, performs state changes on it, and then outputs the changed
quantum/classical data.

Model Checking Recursive Quantum Protocols 15 / 36



Quipper example

gCoinFlip :: Qubit -> Circ Bit

gCoinFlip g = do
g <- ginit False ’0>
hadamard_at g

c <- measure gq
return c

gCoinFlipRec :: Qubit -> recCirc ()
gCoinFlipRec g = do
g <- ginit False
hadamard_at g
c <- measure gq
[...]
if c==0 then
return c
else
return gCoinFlip (q)

Model Checking Recursive Quantum Protocols 16 / 36



Quantum Markov Chains

Solution 2

Data—structures allowing to model recursion in quantum algorithms:
Quantum Markov Chains.

Quantum Markov Chain
Tuple (S, Q, AP, L), where:
@ S is a countable (finite) set of classical states;

© Q:S xS — ST(H) is the transition matrix where for each s € S the
operator ) .. Q(s,t) is trace-preserving;

@ AP is a finite set of atomic propositions;

o L:S — 2" is a labelling function.

Model Checking Recursive Quantum Protocols 17 / 36



Example

NO=} SOk
L OmOL
OO :

o= (=)

I

Figure: QMC for Quantum Coin

Tossing. Figure: QMC for Recursive Quantum

Coin Tossing.

QMCs are more expressive! So, let's use them.

Model Checking Recursive Quantum Protocols 18 / 36



Equivalent Behaviour

Bisimilarity
A quantum circuit can always be translated in a QMC with the same
behaviour, while the converse is not possible.

(Boring proofs in references)

Now what?

e Formal, high—level language to express quantum computations
@ Formal definition of recursion in quantum programs

e Formal verification of quantum programs [J

Model Checking Recursive Quantum Protocols 19 / 36



|
Quantum Model Checking (1)

Model Checking
Exhaustive exploration of the state space of a system to verify (or falsify) if
a temporal property is satisfied.

.

Step—by—step
@ Abstract model of the system;

o Temporal logic to specify the properties.

Model Checking Recursive Quantum Protocols 20 / 36



|
Quantum Model Checking (2)

Abstract Model

Graph structure representing the computation steps. Classically: Kripke
structures, LTS, DTMC.
QMC can be used as a model for quantum computation!

Temporal Logics

Modal logics used to express time—dependent properties.
Example: "In all the reachable states of the system, property A never holds"

(a) LTL
(b) CTL

ﬁ<o<

O—
O—O—0— M
(a) (b)

Model Checking Recursive Quantum Protocols 21 /36



|
Quantum Model Checking (3)

Temporal Operators

S e A} s
4 A A 4

A(=fUf)

Invariant and Eventually

A (i.e., for all computation paths) and E (i.e., eventually, for some
computation path).

Model Checking Recursive Quantum Protocols 22 /36



-
Quantum Model Checking (4)

QCTL
Quantum Computation Tree Logic, it provides also the operators:
o Q-[gl:
° Q=7[g];
o geval((Q =7)[gl, p);
o qprob((Q =?)[gl. p) = tr(qeval(Q =7)[g]. p))).

Model Checking Recursive Quantum Protocols 23 /36



|
QCTL

Quantum Computation Tree Logic

A QCTL formula is a formula over the following grammar:
bi=a| | PAD| Q. [P] state formula
¢ =X | DUSKD | dUD path formula

where a € AP, ~ € {<,2,=}, € € ST(H), k €N.

Example
Q>=1[F(s=05)]

Model Checking Recursive Quantum Protocols 24 / 36



N
What we did: from Circuits to QMCs

Quip-E
We isolated and extended a Quipper fragment that we called Quip-E which
allows the definition of both standard and tail recursive quantum programs.

Entangle

We defined a mapping from Quip-E programs to QMCs. We start by
considering a quantum program generated by Quip-E and we define a
bisimilar QMC.

Model Checking Recursive Quantum Protocols 25 / 36



-
Formal definition of Quip-E program

Definition

A Quip-E program is a circuit in which the result of a measurement is
evaluated and could result in a loop.

Body of Quip-E program

reset: initializes the qubits to |0);
unitary: unitary operator applied to a list of qubits;

measure: application of measurement operators to a list of qubits
resulting in a list of bits;

dynamic lift: A bit is lifted to a boolean through the dynamic lift
Quip- per operator;

if-then-else: evaluation of a Boolean expression;

exit On: loop instruction.

Model Checking Recursive Quantum Protocols 26 / 36




]
From Quip-E to QMC - intuitively

resetCirc :: Qubit -> Circ Qubit
resetCirc q = do
reset_at q

Model Checking Recursive Quantum Protocols 27 / 36



From Quip-E to QMC - intuitively

unitCirc :: Qubit -> Circ Qubit
unitCirc q = do
hadamard_at g

— B g —

Model Checking Recursive Quantum Protocols 28 / 36



FromQuip-E to QMC - intuitively

measureCirc
measureCirc (ql, g2) = do
cl <- measure qi
c2 <- measure qZ2

(1;anéz>

Lg Mo /}““-——

— ot
S|,:‘:®\

126 —
Kﬁ?‘z. [?bo.bl!/

loM

= .\f?—\-\- e
\ng. o, m])

Model Checking Recursive Quantum Protocols

(Qubit, Qubit) -> Circ
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From Quip-E to QMC - intuitively

iteCirec :: (Qubit, Qubit)
iteCirc (q1l, q2) = do
cl <- measure gl
b0 <- dynamic_lift ci
if bo
then do hadamard_at q2
else do gate_X_at g2

-» Cirec ()

Model Checking Recursive Quantum Protocols 30 /36



]
From Quip-E to QMC - intuitively

loopCirc :: (Qubit, Qubit) -> Circ RecAction
loopCirc (ql1l, q2) = do
cl <- measure gl
b0 <- dynamic_lift cl
if b0
then do hadamard_at q2
else do gate_X_at g2

M@l

= Sy, [bO
1aH 2, [b0]
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|
Operational Semantics of Quip—E (1)

k

M Mk
(reset_at qi, L) =% ( , L) (reset_at q,L) =% ((X_at qy, L)

(U_at [gq,---,q;),L) —=(__,L)

for i € {0,1}

(m + measure q,l) M, (___, L[L(m) =i]})

(bool <- dynamic_lift m L) 5 (___, L[L(bool) = L(m)])

Model Checking Recursive Quantum Protocols 32 /36



|
Operational Semantics of Quip—E (2)

L(bool) =i

7 for i € {0,1}
(if (bool) Body_Ci else Body_Co,Ll) = (Body_Cj, L)

(Body_C1,L) S (Body_ci7, L)

(Body_C1 Body_cz,L)i(Body_cl' Body_Cp, L)

(Body_cCy,L) S L)

(
(Body_C1 Body_Ca, L) S (Body_Ca, L)

050
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Implementation

We implemented EntanglAe using the Transformer module of
Quipper. The input quantum program is a Quip-E function and the output
QMC is a QPMC model.

@ The gates in the quantum circuit are grouped together with their
associated qubits, preserving the execution order;

@ we compute the matrix representation of the quantum gates, taking
into account also the conditional branches and the initialization
operators;

© the last step is the conversion of the list of transitions into QPMC
code.

Model Checking Recursive Quantum Protocols 34 /36



testInit ::
testInit

(Qubit)
(q) = do

reset_at g
hadamard_at g
ma <- measure g
bool <- dynamic_lift ma
exitOn bool

Model Checking Recursive Quantum Protocols

—-> Circ RecAction

ame

const
const
const
const
const
const

matrix AL_T = MO;
matrix Al_F = M1;
matrix A2 = PauliX;
matrix A3 = Hadamard;
matrix A4_F = MO;
matrix A4_T = M1;

module testInit

s:

[0..4] init O;

b0: bool init false;

[1 (s =0) —> <<A1_T>> : (s’ =1) &
(b0’ = true) + <<AIl_F>> : (s’
= 1) & (b0’ = false);

[1 (s =1) & b0 -> (s’ = 2);

[1 (s =1) & !b0 -> <<A2>> (s’ =
2);

[1 (s = 2) => <<A3>> : (s’ = 3);

[1 (s = 3) —> <<A4_F>> (s" = 4) &
(b0’ = false) + <<A4_T>> : (s’
= 4) & (b0’ = true);

[1 (s =4) & !'b0 > (s’ =0);

[] (s = 4) & b0 -> true;

endmodule
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Conclusion and Questions

TO-

DO

optimization of Entang)e to verify more complex quantum
programs;

optimization from the model checking point of view, involving the
automatic verification of more complex properties, i.e., entanglement
and other quantum effects;

translation and verification of more complex, real-world quantum
protocols;

simulation (and translation) of quantum dynamics;

spatial properties verification.

Model Checking Recursive Quantum Protocols 36 / 36
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Density Matrix
One-Body Density Matrix (OBDM):

Hyn (1,72, ., T8) = Exn (4, 72, 0 TY)

DGRy = N fdr—z’ AT PR T T T o )

Diagonal OBDM:
pr) = plr, 1)

Normalization f p(r)dr =N



-
Off-Diagonal Long-Range Order

fp(?,?’) (pj(f") dr' = j(pj(F), Aj € R, Zﬂj =N, Ao =A =2y > -
natural orbitals occupation numbers

[0, 0@ dF = 81, D 0@ 9,G) = G =)
J
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Deviations
lo x N | ODLRO Ao x N Ao NE L =€ < from
BEC Fermions ODLRO




Momentum distribution

1
(2mh)3

n(p) = f & f p(#,7") e (' -F)/A gi

Normalization j n(p)dp =N
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Momentum distribution

1
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Normalization j n(p)dp =N

1 il 5
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Lieb-Liniger Model r=2m=1

N
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1<i<j<N Mp coupling

l

Tonks-Girardeau

s XN = 0 M. Girardeau, J. Math. Phys., 1 (1960) 516
Gas (y - »)

Zi=Zj

Low density =

PBC: xn(z1 + L, ..., zy) = xn (24, -, ZN)

0 L
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Lieb-Liniger Model r=2m=1

N
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y = _20 —+2¢ 2 5(zi — z) = Dimensionless
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1<i<j<N Mp coupling

l

Tonks-Girardeau "
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Lieb-Liniger Model r=2m=1

N

i C
—2E+ZC 2 5(21'—2]) = —

i=1 1<i<j<N flip

Tonks-Girardeau

, XN = 0 M. Girardeau, J. Math. Phys., 1 (1960) 516
Gas (y = o)

Zi=Zj

Low density =

PBC: xn(z1 + L, ..., zy) = xn (24, -, ZN)

27T N+1 /1 _Ak )
Aj— 7 ( ——) Zarctan ’ j=1,....,N

2

xn (21, -, 2y) = NV det(e'l#m) 1_[[/11 — 1, —icsignlz;—z,)| Bethe ansatz solution

n<l
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* One-body density matrix for Lieb-Liniger bosons
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Lieb-Liniger Bosons
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Lieb-Liniger Bosons
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Lieb-Liniger Bosons
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* One-body density matrix for Lieb-Liniger anyons (including 1D hard-core anyons)
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Lieb-Liniger Model with anyons
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Off-Diagonal Long-Range Order
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Predictions for C (k)

nu(p = 0) o« NCUO

L . Large distance ”Small” momenta
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Hard-Core Anyons y — 0
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Predictions for C(k,y)
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Critical Coupling
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Conclusions and Outlook

ODLRO 1n terms of occupation numbers

Quantify deviations from ODLRO in 1D Systems

Bosonization and Harmonic Fluid Approach as check

Inhomogeneous LL bosons (finite coupling), Finite Temperature,
Experimental Results ...
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M -bod t d . n dim.
dny-Dody systems aynamics ) g , 5o
i=1

How does information propagates?

A

LAL) = At unitary evolution V1ot () = €7 [thor)

wof equilibrium




1. “spreading of quantum
information across the system”

quantum chaos from the semi%ical limit
—» OTOC correlators

Scrambling and entanglements

spreading in long range spin chains

2. &

3.




\/Classical chaos :

“exponential deviation of trajectories”

am t /\‘
—() s i@t Lyapunov exponent

Poincaré section
Regular case: K = 0.2 Chaotic case: K = 20
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Q(t)
MYV Berry - AIP Conference proceedings, 1978







“hypersensitivity to

(? \ Quantum ChaOS perturbations of H ”

On states:

1984 Peres T &
m(t) = (1hole!HTIBI g=1Ht )0} Loschmidt echo

2001 Levstein-Jalambert-Pastawski

In operator space: B(t) = eifI tB e—th

Ag( ) _ e"SB(t)Ae“SB(t) 5B .

~ A+ i6[B(t), A
((As(t) — //




The square commutator

Larkin and Ovchinnikov. 1969 soviET PHYSICS JETP

QUASICLASSICAL METHOD IN THE THEORY OF SUPERCONDUCTIVITY

canonical
quantization 2
C(t) = —([£(2), 5(0)]*) —» h* {z(t), po}*= A’ (a;afz)>

Larkin, Ovchinnikov - Sov Phys JETP, 1969

Kitaev. 2015

« many-body system
« to generic operators T
» SYK model C(t) ~ e’

(Majorana fermions: all to all
random interaction)




What is scrambling? . @b

C(t) = —([B(t), A1%)p|= (B(t) AAB(t)) + (AB(t) B(t) A)
—(B(t)AB(t) A) — (AB(t) AB(t))

“out-of-time ordered correlators”

.expefctati“on for a “Cha otic e
quantum system”

o€ C underlying classical limit

Maldacena, Shenker, Stanford - Scaffidi, Altman - arXiv:1711.04768, 2017
Journal of High Energy Physics, 2016 Cotler, Ding, Penington - arXiv:1704.02979, 2017




Non exponentlal behavior of C( )

- extended (thermal) phase
MBL phase C(t) ~ t*

Chen, Zhou, Huse, Fradkin - Annalen der Physik, 2017

Short range on the lattice

- extensive operators A= Zaz
« lattice models

« local interactions

Kukuljan, Grozdanov, Prosen - Phys. Rev. B, 2017

111 relevant in 1Q

Hosur, Qi, Roberts, Yoshida - Journal of High Energy Physics, 2016







Entanglement

2 2
* “entanglement is rather the characteristic trait of
? ? quantum mechanics. “

Y ',:..‘_:I_- ' 5
E. Schrédinger, 1935

QUANTUM WORLD: more than an object

S | ‘ >A| .>B el . ) Al .)fbr all measures
| ‘)Al ‘>B « atlong distances

v

properties between
the two systems
are correlated




Entanglements dynamics

entanglement entropy

Sr(t) = ~Tx(pr log pr) $ ¢ ¢ é $ $

: Quantum Flsher Informatlon
Multipartite entanglement :

b ¢ o

bound on the Size of the biggest entangled block (7 \




Scrambling and entanglement

7.

spreading of information = entanglement dynamics

N

Qj Lol _EAgR
— unitary evolution Cgfj

_> QO

globally —p pure state
locally —» observables thermalize: initial conditions are lost

the information is hidden non-locally in the correlations
between subsystems: entanglement




Scrambling 1 &

scrambling: non-commutativity of operators
induced by the dynamics

square-commutator: introduced in quanto chaos|
goes exponentially:classical underlying

entanglements globally information is conserved:
Sp readi ng 2 hidden non-locally in entanglement

3.long range spin chains




life beyond

B

square commutator ¢(t)

semi-classics

h

.

time ¢

chaotic systems

-

“A'd o - ey =
e exponential

e saturation

Ol eN

regular systems

¢ polynomial
e polynomial growth
o lrec ™ N

e different from entanglement!




The model. Lipkin-Meshkov-Glick

Infinite range Ising model

o
H(h)=-=) SiS;—2
vJ

« solvable

e [5'2,E[] :O, §=Z§z

- semiclassical limit he} f~1/N

- initial state [¢g) = | TT

.............................................

...............................................

Sciolla, Biroli - Phys. Rev. Lett., 2010
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h)J

Lipkin, Meshkov, Glick - Nuclear Physics, 1965




ﬁ=f[LGM —-Z—KS'Z Z d(t — nr) Lé;q

n=-—aoo

A

[52,H] =0, §=%"5; collective spin

A

- Floquet theory §/ = f]kick exp [—iﬂLGM 'r]

2K
with Ulek = eXp [_ZW 52]
- semiclassical limit Agrr ~ 1/N

Haake - Springer, 2013




e(t) = — ([m?(¢), m*]")
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square commutator c(t)

Truncated Wigner
Approximation




Classical and quantum chaos U= e [_Z% gzzl —iflLom
classical limit 7, ¢ =h/N
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Q[t)

; Q(t)
Ehrenfest time: time until which semi-classics holds
\/heffe’\t ~ 1
\/ﬁefft ~ 1 - / N tEh'r N/ lOgN

Recurrence time: time at which the wave-packet regenerates

trec ™~ N

e 208

spectral properties of Floquet spectrum: transition from Poisson to
quantum Wigner-Dyson distribution




Information dynamics c(t) = — { [mA(t), )
in the LGM k=0 St = Tr (plog pr)




Entanglement and semi-classics

3.entanglement is a state __
dependent property

T —
0.75 | DTWA —e— |

| Discrete Truncated Wigner
Approximation
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Scrambling beyond semiclassics
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Quantum regime and the operator’s growth

3.5

S"(f)
1 qz Oz # 1 14 )/N —— L
(t) = -7 (|57, 8| ) S c/() c(t*) =2
2|
. 4. related to the operator’s support L5 |
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square commutator c(t)

B e ——
n fo(t)c/(It\; —

breaking of integrability

150 200

scrambling: purely quantum, use operator space entropy

not entanglement



Wigner representation and TWA

Hilbert space <4——p Continous Phase Space

+ density matrix ﬁ Wigner function W (q, p)
+ operators O Weyl transform Ow (p, q)
+ expectation values Truncated Wigner Approximation

((A)(t))zTr[ﬁo(A)(t)]"—“./ dgo dpo W (g0, Po) qC(lt C(lt)

}zt\ T WA
7 e

8 e eoioa o o2 oi o6 os 1 classical evolution + average over
e the initial Wigner distribution




Discrete Wigher representation
and DTWA 1]

Hilbert space  <4——p Discrete Phase Space

+ density matrix ,5 Wigner function W (a)
+ operators () Weyl transform Oy (@)

+ expectation values

a
Mda.)
_ =TI RTTSTR) N octes L
' S > discretization of the initial
§§ . 2§€ condition + classical evolution 3N
) [ 3

Schachenmayer, Pikovski, Rey - Phys. Rev. X, 2015 Wootters - Annals of Physics, 198]



Entanglement structure  Numerics with MPS-TDVP

matrix product state time-dependent variational principle

[f @(o0) ~ N fo(t) ~const  fg(t) ~ constj

General structure! ,
induced by entanglement’s
monogamy

Sr(t) ~logt Si(t)~tP withf <1
(SL(oo) ~ log L S1(c0) ~ Lj

Haegeman, Lubich, Oseledets, Vandereycken... - Phys. Rev. B, 2016
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Introduction
Introduction

“No theorist in his right mind would
have invented quantum mechanics
unless forced by data”

— Craig Hogan

From Axioms:

o Phase space: Complex Hilbert space (% = L?(IR3, dx))
@ Observables: Self-adjoint operators on H

o Time evolution: Unitary 1-parameter group generated by
Schrédinger equation



Unboundedness
Unboundedness

Unboundedness is unavoidable in Quantum Mechanics:
Heisenberg's uncertainty principle:

[X,P] =i
Proof:

X7 P =inx" X7 = XY
X7, Plll= 1X"P — PX7< 21 X7 | PlL< 20X X 1P|
n
Z<IXNPI vneN

Scientists in the '20-'30 need to develop the theory of unbounded
operators (von Neumann, Stone, ...)



Unboundedness
Unbounded operators

Unbounded operator

An unbounded (= not necessarily bounded) operator is a linear

map
T:D(T)YCH—-H

The assignment of the domain is crucial!
Different domains assigned to the same formal operator define
different operators:

@ eigenvalues

@ scattering properties

@ invertibility



Unboundedness

What can go wrong? (1/2)

Time evolution associated to i0;1) = —021) is unitary (e.g.
1(t, )| 2(z,ax) = 110, X)||12(z,06)) (Z = (0,1) CR)

i0pp(t, x) = —029(t, x)
b(0,x) = ev:* € L(T, dx)
Look for solutions ¢(t, x) = e“fek~:

Solution: ¥(t,x) = e~ te\vi®

t—+00
0

1t M E2z.a0) = €2 1900, )12 7,9

Source of problem: (0, x) ¢ domain of self-adjointness!



Unboundedness

What can go wrong? (2/2)

Eigenfunctions associated to different eigenvalues are orthogonal \

) = k) AT, o)

If k € C, ¥x(x) = e € L%(Z,dx) is an eigenfunction.
To see if they are orthogonal we need to evaluate

1 . ..
<¢k7wj>L2(Z,dx) :/O e*lkxeljx dx

i—iell—k)

<¢J7 ¢k>L2(I,dx) {1 =k



Natural Domains
Handbook of Definitions

Closed. T is closed iff D(T) with the operatorial scalar product:
(W, o)1 = (T, To)u + (¥, o)n
is a Hilbert space (it is a Banach space).
Closable/Closure. T, D(T) = W”AHT
Adjoint T If D(T) is dense in H then one defines
D(T"):={f e H|IneH st. (£, To)u = (n,¢)u, Ve € D(T)}
T f:=n
Symmetric. (o, TY)y = (T, ¥)u Yo, € D(T). (equiv. T C T7)
Self-adjoint. T = T" and D(T) =D(T")
Essentially self-adjoint. T is self-adjoint.

Self-adjoint extension. T symmetric, T C T C T.a C T*.



Natural Domains
Beyond toy examples

For differential and multiplicative operators, non-self-adjointness is
due to

@ boundary conditions

@ singular points of the operator

In principle one can choose a lot of domains for unbounded
operators. If we want to model nature there are some natural
choices.



Natural Domains
Natural domains

Formal operator T =3}, ¢i(iVY + V(x), Hilbert space
H = L%(Q), Q C R” open:
e Minimal domain: D(T,,;,) = C(Q\ ).
N={x e Q| V(x) is 'too singular'}
e Maximal domain: D(T.x) = {f € H|Tf € H}.
T acts distributionally.

— Minimal operator Tpjn: (T,D(Thmin))
— Maximal operator T,,..: (T,D(Tmax))

Tmin C 7—max

Tmin SYymmetric
min y . . :> TmaX — ;:”n
D(Tmin) is dense in ‘H



Dirac-Coulomb operators
Relativistic Quantum Mechanics

Dirac found the right equation to describe the motion of a %-spin

particle in the relativistic regime:
iho:V(t,x) = HY(t, x)
Hfree = —icho - V + Smc?

0 o 1 0
v 8) (0 5)

W(t, x) is a spinor, i.e. W(t,x) € L?(R3,C*). This means

Vy(t,x) e~ spin up
| Yot x) e~ spin down
V0= 1 yy(e x) 77
Wy (t, x) [

10/15



Dirac-Coulomb operators

Relativistic Hydrogen Atom

Model of the hydrogen atom with relativistic kinetic energy

H, = —ihca - V + Bmc? + ’—V’]l
X

It has been used to compute bond states energies:

E, = mc? (1 + V2/62 >_1/2
=
(n++/1—(v?/c?))?
& Correct non-relativistic limit
2
En—mc® =y -
n—me 2(n + 1)2

 Correct experimental prediction (fine-structure corrections)

L
@ Break-down of the formula: If || > ¢? (Z ~ 137) we have
imaginary eigenvalues!

11/15



Dirac-Coulomb operators
History of the problem

c=h=1

1948 - 1955: Rellich and Kato proved independently essentially
self-adjointness for |v| < 1

1970: Rejto proved essentially self-adjointness for |v| < %
1971-1972: Weidmann, Schmincke, Rejto and Gustafsson proved
@ Essential-self adjointness for |v| < § (well-posedness)
e Non essential self-adjointness for |v| > § (ill-posedness)
2007: Voronov, Gitman, Tyutin classification 'a la von Neumann’
of the extensions (abstract)

2013: Hogreve attempt of classification in terms of boundary
conditions at r =0

(M. Gallone, Self-adjoint extensions of Dirac Operator with Coulomb Potential,
Advances in Quantum Mechanics, Springer, 2017)

12 /15



Dirac-Coulomb operators
Classification of extensions

2018: M.G. and A. Michelangeli proved that if v € (‘[ 1) then

e f € D(H*) have asymptotics
f=ar V1”2 L brV1V 4 o(r1/2) as r — 0

@ The choice of 7 € RU {00} defines a self-adjoint realisation
through the boundary condition
a=(¢+d,)b

¢, and d, are explicit (but not very illuminating!)
@ Estimate of the ground state
Bl = L
y[vV1—12+1
(M. Gallone and A. Michelangeli, Self-adjoint realisations of the Dirac-Coulomb

Hamiltonian for heavy nuclei, Analysis and Math Phys, 2018)

13 /15



Dirac-Coulomb operators

Eigenvalues
Boundary condition == explicit formula for EV
S(E) =7+ dy
E
1.0

arctan(y)

L

S

-1.0

(M. Gallone and A. Michelangeli, Discrete spectra for critical Dirac-Coulomb
Hamiltonians, Journal Math Phys, 2018)

14 /15
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Entanglement and thermodynamics i

out-of-equilibrium systems

Vincenzo Albal

ISISSA, Trieste
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[V.A. and P. Calabrese, PNAS 114, 7947 (2017)]

» Complexity of out-of-equilibrium quantum matter.
» Entanglement and quenches.

» Goal: Entanglement dynamics after quantum quenches.

- N . o V. Alb: d P. Calab , Phys. Rev. B 96, 11541 (2017
> Semiclassical picture & Integrability. [/ ¢ P Colabrese, Phys. Rev (017l
[V. Alba and P. Calabrese, J. Stat. Mech. (2017) 113105]

;. . [V. Alba and P. Calabrese, arXiv:1712.07529 ]
» von Neumann vs Rényi entropies.
[V. Alba, arXiv:1706.00020 ]

ACTIONS

BAATIE CARR
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Out-of-equilibrium isolated many-body systems

> Question: How do simple descriptions (thermodynamics) emerge in

out-of-equilibrium isolated sytems?

-

L

>

B

AU B = isolated universe

Unitary dynamics under Hamiltonian H

L,{ — oo,with{ < L

time — oo

> Long-time limit of local reduced density matrix? Is it thermal?

pa = Trppaus

Vincenzo Alba

Entanglement spreading



Wonders of out-of-equilibrium systems

P. P. Rubens, Vulcan forging the Thunderbolts of Jupiter (1637), Prado Museum

“sudden”  global
manipulation

Quantum quench, Floquet dynamics,
adiabatic quench (ramping)

isolated quantum
system (T=0)

= Theory toolbox:

- Integrability
- DMRG
- Exact diagonalization

- Field Theory methods

Challenge: No unifying theory
framework

Vincenzo Alba Entanglement spreading



Out of equilibrium physics in cold-atom experiments

[Kinoshita et al., Nature 440, 900 (2006)]

[Greiner, Nature (2002)]

RS .
a?.o .*",‘ ’ e

[Trotzky, Nature Phys. (2012)]

Vincenzo Alba Entanglement spreading



Quantum quenches in isolated many-body systems

Quantum quench protocol

> Initial state W) = unitary evolution under a many-body Hamiltonian H

{l4a)} eigenstates of H Wo) =2, caltba)  [W(1)) =32, eFfcaltba)

ca = (Voltba)

> For a generic observable O:

(W(2)| 01w (1)) = %ei(Ea_EB)tCZCB@aB

> Long time = diagonal ensenble.

(W(D)O[W(t)) = (O)pE = 3, [(Wolta)*Oua

Vincenzo Alba Entanglement spreading



Equilibration in integrable models

> Integrability = Local (quasi-local) conserved quantities Z;.
[H,Zj] =0,V and [Z;,Zy] =0, V), k Ih=H

> Include extra charges in Gibbs = Generalized Gibbs Ensemble (GGE).

E
568 — Laup (5,57

[Jaynes, 1957;Rigol,2008]

IQaIS'!Iil:! "o

» Generalized microcanonical principle.

e
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nt: quantum mechanics at its strangest

. . RESEARCH ARTICLE
» Einstein-Podolsky-Rosen paradox: e

QUANTUM OPTICS

Satellite-based entanglement
W) = (|14 + | 41) distribution over 1200 kilometers

Jumn ¥ia* ¥uan Cao,"* ¥u-Husd 1L Sheng Hal Liao,** Lisng Zhang, ™

48 Gamg Ren"* Wen G Cal,** Wl Yue Lin, Be 1L'* Fui Dad,** Ouang Biag L1,
- Mlng L Yen Eiang Goeg ™" Yo Xa,'* ShasngLis 15" eng2hi L

Yo-un Vin,* 71-lng g, Ming LL* Jian-em J1a” Ge Koo, Dung He,*

l I V1 Lin Zhou,” Xise Xinng Zhasg’ Na Was s Xiang Chang,” Zven Cal Zha
Nad Le Lru,** ¥uAo Chen, ' Chao-Yang Lo,™" Roog Shn,™* Cheng 2 Peng,'™"
Jms Vo Wang ™ fan Wl Pante

oth Lests af
'h-nhn phyvic and acsbirle caiankam nedworks, o-m o charnal b, howver,
omnmu. Hure wa o monsinie
dd of wntangied ated by
1203 kilometers on Earth, theough beo sabelibe-to-g nwml downlbick s with a wenmed
Torgth varying frorm 1600 to 2400 kilorebers., We stmarved @ survival af two-photn
entangtement and a violatien of Sel Hﬂl!lw oy 237 * 0.08 uncer strict Enstoin
Inesiity corditions. The obimined sfhecthe ink sfficiney & orden of magnitude highe
than that of Sve dirsct bidise chonsd tramsmission of the two photons hiough
telcarimuication fbar,

> Perfect anticorrelated spin measurements.

Science 356, 1140 (2017)
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Entanglement: quantum mechanics at its strangest

» Einstein-Podolsky-Rosen paradox:

W) = (| 1)+ [ 41

./Ao QB\.

> Perfect anticorrelated spin measurements.

> Haiku view on entanglement:

RESEARCH ARTICLE

QUANTUM OPTICS

Satellite-based entanglement
distribution over 1200 kilometers

Jumn ¥ia* ¥uan Cao,"* ¥u-Husd 1L Sheng Hal Liao,** Lisng Zhang, ™
48 Gamg Ren"* Wen G Cal,** Wl Yue Lin, Be 1L'* Fui Dad,** Ouang Biag L1,
o-Ming La* Yen Hong Gong™ Yo Xu,'* ShasngLis 10" Feng#h L,
Yo-un Vin,* 71-lng g, Ming LL* Jian-em J1a” Ge Koo, Dung He,*

" NMise Xinng Zhasg.’ Na Was s Xiang Chang,* Zven Cal Zha*
Nad Le Lru,** ¥uAo Chen, ' Chao-Yang Lo,™" Roog Shn,™* Cheng 2 Peng,'™"
Jms Vo Wang ™ fan Wl Pante

Lests af

oth
ru-l'hn ahmu and scaslable uantum networks. Owru to charnai koss, however, the
ommu. Hare wa crmansirt

o mntanghed weparaied by
1208 hidometers on Earth, theough wa sabelite-tog el domali it meperd
Iorugth virying from 1600 to 2400 kiomebers. We sbaared o survival of fwo-photon
entangioment and a wialatien of Sel e gualty by 2.3 * .08 uncer strict Enstein
Ioesiity cordtions. Tho obtmned oTh-:5ha link eMficloecy & orde. of magnitude Wghie
than that of e direct bidisectionsl iransmissien of the wo photons hucgh
telecommumication fbers,

Science 356, 1140 (2017)

Up here down there, these bonds are

stronger than time. N.B.
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Entanglement entropy in many-body systems

» Consider a quantum system in d dimensions in a pure state |V)

p = V)V

> If the system is bipartite: B

O}

H=Has® Hg — pa= Trgp

» How to quantify the entanglement (quantum correlations) between
A and B?

» von Neumann entropy Sp = —Trpalogpa = —>; Ailog A

> Rényi entropies S| = ——Lolog(Trp}) = — L5 log(X2; A7)

Vincenzo Alba Entanglement spreading



Entanglement dynamics: Semiclassical picture

» Extensive amount of energy = quasi-particles produced uniformly in the
initial state.

[Calabrese, Cardy, 2005]

time

\\\_ /(\ .//:Q\\ /\/ ’ o
B ' 7 ' B

Sa(t) o< 2t [ dAV(AF(N) + £ [ dAF(N)

2|v|t<t 2lv|t>L

> Requires quasi-particles group velocities v(\)
> f(A) cross-section for quasi-particle production.

» Exact for free models. [Fagotti, Calabrese, 2006]

Vincenzo Alba
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Integrable models (& /a Bethe ansatz)

> Integrability = stable families of “single particle” excitations.

Anj = particle quasimomentum = rapidity.

» Generic eigenstate:

[{Ans})

» Thermodynamic limit = macrostate = particle and hole densities

{pa(N), 05 ()

> # equivalent microscopic eigenstates = Yang-Yang entropy

Svy = LY, [ dA[pY) log p) — pnlog pn — pi” log piI"]

Vincenzo Alba Entanglement spreading



Quenches in integrable models

> Key idea: Steady state = macrostate |p,).

E

eSlenl = # of representative eigenstates

S[pn] = thermodynamic entropy

IQaIS'!Iil:!"' IPn)

> Integrability = |p,) and S[p,] can be determined analytically.

Vincenzo Alba Entanglement spreading



Steady state entanglement entropy

> Steady-state entanglement entropy density is the thermodynamic entropy.

B A B
(eZe]e’e 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
14

Sa/t = (TrpSSE log pSE) /L = 32, [ dAsa()

> Cross section for quasi-particle production is fixed f(A) = sp(\):

Sa(t) =25 03 [ dAsa(N)

o
F
a
=
u
<

$E
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Entangling quasi-particles

» How to identify the entangling quasi-particles?

E

0, T3, Ta,...  |pn)

[J.-S. Caux and F. Essler, Phys. Rev. Lett. 110, 257203 (2013)]

> Local observables = dynamics determined by low-lying excitations around
steady state |p,).

g.
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Theoretical program

o W,
quantum quench )

representative
state

Semiclassics low-lying
excitations

Post-quench dynamics

t— 00

Sa(t) x 3, [ t[dAvi(\)se(A) + ¢ fdAsk(A)]

[vi|t<l [vi|t>£

o
F
a
=
u
<

PAAIIE CLIMIE
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Model and quenches

> Spin-1/2 anisotropic Heisenberg (XXZ) chain.

Hxxz = 2(5 S +S 5,+1+A525,Z+1) A>1
> |nitial states:
Tilted ferromagnet |UP, ¥) = ”9/22 % I8 AR
Tilted Néel [N, 8) = J5e 2207 (1) B2 + 1n)®?)

Majumdar-Ghosh (Dimer) |MG) = (IN) |LT))@)L/2

o
F
a
=
u
<
e

BAAIIE CLi
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Numerical checks: Full time evolution

» XXZ chain with A = 2: Quench from Néel state.

U
0.4
0.3
>
Doz
0.1 -—- Conjecture
* iTEBD
¢ Extrapolations
1

1.5 2

.
vyt

> Fairly good agreement apart from finite size (time) corrections.

Sa(t) x 32, [ k fiAvk(A)sk(A) +|e fixsk(A)} 5

Vincenzo Alba Entanglement spreading
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Numerical checks: Linear growth

> QUenCh in the XXZ chain. iTEBD from [Fagotti et al., 2015]
P (a) Neel —

o

< Cp p o < D
A
Wonoa o
®N = A=

LB BB

sA(t)oczk[ t [dAv(N)se(A) + ¢ fdAsk(A)}

[vi|t<l [vi|t>L

o
2
o
-
0
q
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Conclusions

» Entanglement dynamics after quantum quenches in integrable
models.

» Improved Semiclassical picture using integrability.

» Entanglement dynamics encoded in the steady state and low-lying
excitations around it.

o
2
o

-
0

’ <
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Thanks!
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Non-linear Schrédinger equation
with point interactions

Raffaele Scandone (SISSA Trieste)

Trieste Junior Quantum Days, 18 May 2018

Based on joint works with Vladimir Georgiev, Alessandro Michelangeli and
Alessandro Olgiati.
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Heuristic model

Formally, consider the equation

N
iOeu = =D+ Y i 6(x — yj) + N (u),
j=1

where {y1,...yn} are distinct points in RY, which supports delta-like

interactions of strenght {u1,...un}, and N (u) is a non-linear interaction
potential.

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 2/ 14



Heuristic model

Formally, consider the equation

N
iOeu = =D+ Y i 6(x — yj) + N (u),
j=1

where {y1,...yn} are distinct points in RY, which supports delta-like

interactions of strenght {u1,...un}, and N (u) is a non-linear interaction
potential.

Why we consider point interactions?
Why we consider non-linear potentials?

How to give a rigorous meaning to the equation?

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 2/ 14



Point interactions, motivations

N
D+ Y i b(x = ;)
j=1
provides an heuristic model for a quantum particle subject to a "contact
potential", created by point sources of strenght 11, centered at y;.
@ Kronig and Penney (1931) consider the 1D case as a model for a
non-relativistic electron moving in a fixed crystal lattice.

o Bethe, Peierls (1935) and Thomas (1935) consider the 3D case with
y = 0. Introducing the center of mass and relative coordinates, this
provides a model for a deuteron with idealized zero-range nuclear force
between the nucleons.

@ Appears in many contexts: nuclear physics, solid state physics etc.

@ Provide "solvable" approximation of more complicated and realistic
phenomena, governed by very short range interactions

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 3/14



Non-linear potentials, motivations

Consider the 3D many-body Hamiltonian
Hy = Z ij + Z — Xk)
<j<k<N

where wy is a pontential governing the interaction between the particles.
Assume Bose-Einstein condensation at time t = 0:

1/1(()N)(x1, Ce XN R HJN:1 up(xj), N> 1.

Then we have condensation at any time t > 0:
itHpy ,1,(N) ~ TN .
ey (Xl,...,XN)NHj:1 u(t,xp), N>1,

{iatU:—AU—FN(U) N () = {(W*\u\z)u wy = N~1w

u(0, x) = up(x), lu?u wy = N2w(Nx)

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 4 /14



Non-linear potential with point interactions

N

Hue =Y (=D +Ve0) + > wilx — x),

j=1 1<j<k<N

where V. are smooth potentials, shrinking around the origin in such a way

to create a delta-like profile as ¢ — 0. Assume Bose-Einstein condensation
at time t = 0.

o Is condensation preserved, at least for short times?

e Can we rigorous prove that the evolution of the condensate is
governed by the equation

iOru = —Au~+ pd(x) + N (u)

in the limit N — 400 and € — 07

Work in progress with A. Michelangeli and A. Olgiati. As a first step, we
need to show existence of solutions for the limit equation.

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 5/ 14



Rigorous construction of point interactions

Assume, for simplicity, a single center at the origin.

@ In dimension one, consider the quadratic form
Qf.g) = | OF -0ug dx-+ uFO)E(0). g € H'(R),
R

From @, we realise —A, + ud(x) as a self-adjoint operator on L?(R).

@ In higher dimension, we need a different approach. Suppose d = 3.
The symmetric operator —Alcee(g3\ {0}) has a one-parameter family of
self-adjoint extension {—Aa }ae(—oo,+00]- FOr A >0,

_ 23y . FA(0) e—ﬁle_ 2(m3
D(—Aa)_{zpeL(R).w—FA+a+ﬁ P EHE)

(—As + N = (A + N)F)

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 6 /14



Asymptotics of the wave function

@ The parameter « is related to the scattering lenght of the system at
the centre of interaction. Indeed, a generic element ¥ € D(—A,)
satisfies the so called Bethe-Peierls contact condition

11 .

X)) ~ ———, s=—(4ra)”

( )X*)O ’X| s’ ( ) ’
which is typical for the low-energy behaviour of an eigenstate of the
Schrodinger equation for a quantum particle subject to a very short
(virtually zero) range potentials, centered at the origin and with
s-wave scattering lenght s.

@ When a = 400, then no actual interaction is present at the origin

(the s-wave scattering lenght is zero), and we recover the free
Laplacian in L2(R3).

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 7/ 14



Approximation with regular operators

Let V smooth and compactly supported, and assume that —A + V has a
zero energy resonance, namely a funtion ¢» € L'\ L2 such that

(A + V) =0.

Existence of a zero energy resonance is related to confining property of the
potential V. In particular, V must have a negative part.
Detine, for € > 0 and a function A : R — R, with \(0) =1,

Ae),, x

Vei= 57 V(2)

The potential is shrinking around the origin. N.B. the scaling is not that of
a delta function, but is weaker. We have, in a suitable resolvent sense

lim(—A+ V.) =—-A,
e—0

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 8/ 14



Rigorous formulation of the equation

Consider the Cauchy problem

iy = —Dpu+ N(u), teR xeR
u(0,)=feX

where X is a suitable Hilbert space, for example L2(R3).
@ Since —A,, is self-adjoint, we have a unitary evolution e~ "tAaf,

o Integral formulation of the equation:
t

u(t,x) = etBof — i/ e'(t=5)8a \/(u)(s)ds
0

@ We search for solution u € C(/, X) of the integral equation, for some
time interval /.

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 9/ 14



Energy space

Define, for a > 0, the Banach space

Hy = D((=8a)"?) [0l = I(=Da + 1)"2¢] 2(e3)

@ When a = 400, we recover the Sobolev space H!(R3).

@ We have an explicit characterisation ([Georgiev, Michelangeli, S.] for a
discussion of the general fractional case)

ef\/X|X|
H=<ve >R} :¢p=F +c———: FAe H(R*),ceC
47 |x|
e*ﬁ|x| 5 ) )
[P ey o ~ NF s + (1 e)le]
® The || - [|41-norm is preserved by the unitary evolution e tha,

o We will use H! as the energy space also for the non-linear problem.
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Existence of solutions

Theorem (Michelangeli, Olgiati, S., 2018)

Let w=|x|77, with 0 < vy < % Then the Cauchy problem

iOiu = —Dou+ (w* [u)u, teR,xeR3
u(0,:) =f € HX

has a unique solution u € C([0, T*), H), defined on a maximal time
interval [0, T*).

We have the blow-up alternative:

T* — i t =
< +o0 Jim {Ju(e)llpg, = o0

As long as [[u(t)|y1 stay bounded, the solution can be extended in time.

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 11 / 14



Global solutions

Defone the mass and the energy:
M(u) = / |lu|?dx
R3

1
E(u) =< —Aqu,u> +/ (w * |u]?)|u|?dx
2 Jes

e Formally, if u is a solution of the Cauchy problem, then M (u(t))
E(u(t)) are conserved.

@ To rigorous justify energy conservation, we need the additional
asusmption that w and u are spherically symmetric (only a
mathematical issue or there is a physical meaning?)

@ We want to use mass and energy conservation to find global in time
solution (condensation is preserved also for large times).

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 12 / 14



Assume that w > 0 (repulsive interaction). Then

Hu(t)”i,é ~ M(u(t)+ < —Dqu,u>
< M(u(t)) + E(u(t)) = M(f) + E(f)
Hence ||u(t)|| 12 remains bounded, and by the blow-up alternatives the
solution is global.

@ Also if w > 0 (physical meaning of this condition?) the potential
energy is positive, whence global in time solution.

@ In general, for attractive w, the dynamic is more complicated: blow-up
solutions, bound states.

@ It would be interesting to investigate the nature of these solutions, and
how they depends on the presence of a point interaction.
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Thank you for your attention
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Geometric Hamiltonian formulation of QM Geometry and quantum control
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Geometric Hamiltonian formulation of QM Geometry and quantum control
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Geometrization of Quantum Mechanics

Describing quantum systems in terms of geometric structures.



Geometrization of Quantum Mechanics

Describing quantum systems in terms of geometric structures.

Why?

e Standard formulation of Quantum Mechanics presents a
mathematical structure that is linear and algebraic (operators
in Hilbert spaces)

e Classical Mechanics can be mathematically formulated in a
broad and elegant differential geometric framework (symplectic
manifolds, Hamiltonian fields, Poisson structures...).
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Geometrization of Quantum Mechanics

Describing quantum systems in terms of geometric structures.

Why?

e Standard formulation of Quantum Mechanics presents a
mathematical structure that is linear and algebraic (operators
in Hilbert spaces)

e Classical Mechanics can be mathematically formulated in a
broad and elegant differential geometric framework (symplectic
manifolds, Hamiltonian fields, Poisson structures...).

Phylosophical goal: A unified quantum/classical geometric scenario!

Technical goal: Application of powerful geometric tools that are
well-known in Classical Mechanics to quantum problems.



Geometrization of Quantum Mechanics

Some landmarks

e T. W. B. Kibble Geometrization of quantum mechanics,
Comm. Math. Phys. 65 (1979)

e A. Ashtekar and T. A. Schilling Geometry of quantum
mechanics, AIP Conf. Proc. 342 (1995)

e D.C. Brody and L.P. Hughston Geometric quantum
mechanics, J. Geom. Phys. 38 (2001)

e J. Clemente-Gallardo and G. Marmo Basics of quantum
mechanics, geometrization and some applications to quantum
information, Int. J. Geom. Methods Mod. Phys. 5(6) (2008)
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Summary

Geometric Hamiltonian formulation of QM
Quantum Mechanics in a classical-like fashion
From operators to phase space functions

Geometry and quantum control
Notions of quantum controllability
Differential geometry and quantum controllability
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Classical tools

Phase space

A classical system with n spatial degrees of freedom is described in
a 2n-dimensional symplectic manifold (M, w).
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Classical tools

Phase space
A classical system with n spatial degrees of freedom is described in
a 2n-dimensional symplectic manifold (M, w).

Physical state
A pOint X = (q17 L) qn7 P, .- Pn)

Dynamics
A curve in (a,b) > t — x(t) € M satisfying Hamilton equations:

dx

— =X t
™ = Xu(x()
H: M — R is the Hamiltonian function.

Xy is the Hamiltonian vector field, given by: wy(Xy, ) = dHx (")
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Classical tools
Statistical description

The state is a C*-function p on M and dynamics is described by the
Liouville equation

dp
ot

Poisson bracket: {f, g}pp = w(Xf, Xg).

+{p,H}pg =0
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Classical tools
Statistical description

The state is a C*-function p on M and dynamics is described by the
Liouville equation

dp
ot

Poisson bracket: {f, g}pp = w(Xf, Xg).

+{p,H}pg =0

Physical quantities are real smooth function on M:
The Observable C*-algebra is:

A =e>(M)

Classical expecation value of f : M — R on p:

(F)p = /M F(x)(x)du(x)
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QM in a classical-like fashion

Standard formulation of QM in a Hilbert space H:

Quantum states: D(H) = {o € B1(H)|o > 0, tr(c) =1}
Quantum observables: Self-adjoint operators in K.

Pure states (extreme points of the convex set D) are in bijective
correspondence with projective rays in H:

PH)==  ¢~¢ ©TacC\{0} st ¢=a¢
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@00

QM in a classical-like fashion

Standard formulation of QM in a Hilbert space H:

Quantum states: D(H) = {o € B1(H)|o > 0, tr(c) =1}
Quantum observables: Self-adjoint operators in K.

Pure states (extreme points of the convex set D) are in bijective
correspondence with projective rays in H:

PH)==  ¢~¢ ©TacC\{0} st ¢=a¢

dimH = n < 400
P(H) is a real (2n — 2)-dimensional manifold with the following
characterization of tangent space:

p € P(H): Vv e T,P(H) A, € H(H) s.t. v=—i[A,,p].
$H(H) is the space of hermitian operators on H.



Geometric Hamiltonian formulation of QM
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P(H) as a Kdhler manifold
Symplectic form: wp(u, v) == —i ktr([As, Avlp) k>0
Riemannian metric:

gp(u,v) == =k tr(([Au, PI[Av, Pl + [Av, Pl[Au, P)P) k>0

Almost complex form: j, : T,P(H) > v — i[v,p] € T,P(H)
p — Jjp is smooth and jpj, = —id for any p € P(H):

wp(u, v) = gp(u,jpv)
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P(H) as a Kdhler manifold

Symplectic form: wp(u, v) == —i ktr([As, Avlp) k>0
Riemannian metric:

gp(u,v) == =k tr(([Au, PI[Av, Pl + [Av, Pl[Au, P)P) k>0

Almost complex form: j, : T,P(H) > v — i[v,p] € T,P(H)
p — Jjp is smooth and jpj, = —id for any p € P(H):

wp(u, v) = gp(u,jpv)

Quantum observables as phase space functions
O HH) A= fa:P(H)—R

Equivalence Hamilton/Schrédinger dynamics:

P i) e P =X (p(e)
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P(H) as a Kdhler manifold

Symplectic form: wp(u, v) == —i ktr([As, Avlp) k>0
Riemannian metric:

gp(u,v) == =k tr(([Au, PI[Av, Pl + [Av, Pl[Au, P)P) k>0

Almost complex form: j, : T,P(H) > v — i[v,p] € T,P(H)
p — Jjp is smooth and jpj, = —id for any p € P(H):

wp(u, v) = gp(u,jpv)

Quantum states as Liouville densities
§:D(H)> 0~ po: P(H) —[0,1]

Equivalence quantum/classical expectation values:

(A), = tr(Ao) = /M a(P)po () di(p)
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From operators to functions

Definition
A map f : P(H) — C is called frame function if there is Wy € C

s.t.
> f(p) = W
peN

for any N C P(H) s.t. dg(p1,p2) = 5 for p1, p2 € P(H) with
p1 7% p2 and N is maximal w.r.t. this property.
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From operators to functions

Definition
A map f : P(H) — C is called frame function if there is Wy € C
s.t.

> Flp) = Wr

peN

for any N C P(H) s.t. dg(p1,p2) = 5 for p1, p2 € P(H) with
p1 7% p2 and N is maximal w.r.t. this property.

F2(H) = {f : P(H) — C| f € L2(P(H), u), fis a frame function}

Theorem (V. Moretti, D.P. 2014)

Phase space functions describing quantum observables are real
functions in 32(3() and obtained from operators by:

O:H(H)> A~ fa fa(p) = k tr(Ap) + ktr(A) k>0

n
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From operators to functions

Definition
A map f : P(H) — C is called frame function if there is Wy € C
s.t.

> Flp) = Wr

peN

for any N C P(H) s.t. dg(p1,p2) = 5 for p1, p2 € P(H) with
p1 7% p2 and N is maximal w.r.t. this property.

F2(H) = {f : P(H) — C| f € L2(P(H), u), fis a frame function}

Theorem (Ashtekar et al. 1995)

A vector field X on P(H) is the Hamiltonian vector field of a
quantum observable (i.e. X(p) = —i[A, p] with A € $H(H)) if and
only if

Lxg =0
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C*-algebra of quantum observables in terms of functions

O:H(H)>Ars f4  — linear extension — O : B(H) — F?(H)
F2(H) as C*-algebra of observables

-) Involution: A = O(f), A* = O(f);
-) * - product: fxg =0 (07}(f)0(g)):

fah= é{f,h}PB+ %G(df,dh)Jr fh k=1
-) Norm: [[[f|[] =[| O7(f) |

1
N =5

1—k

P(F)

f— fdu k>0

o0

where dy is the volume form induced by g.
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Quantum control

Controlled n-level quantum system

. d
i) = GG

Ho + Z H;u;(t)
i=1

with initial condition [1)(0)) = |t)o).

Pure state controllability

The n-level system is pure state controllable if for every pair
[1o), |11) € H there exixst controls uy, ..., un and T > 0 such that
the solution [¢)) of (x) satisfies

[¥(T)) = lv)
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Quantum control

Controlled n-level quantum system

Ho + Z H;u;(t)

i=1

ihi u(t) =

> U (s)

with initial condition U(0) = L.

Complete controllability

The n-level system is complete controllable if for any unitary
operator Ur € U(n) there exist controls vy, ..., u, and T > 0 such
that the solution U of (xx) satisfies

U(T) = Ur
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Differential geometry and quantum controllability

Geometric Hamiltonian formulation

p(t) = Xo(p(£)) + D Xi(p())ui(t)
i=1
Xi are the Hamiltonian fields on (%) defined by the classical-like

Hamiltonians obtained with our prescription.

Accessibility algebra

The smallest Lie subalgebra € of the Lie algebra of smooth vector
fields on P(H) containing the fields Xp, ..., Xp.

Accessibility distribution
C(p) :=span{X(p)| X € C}
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Theorem (D.P. 2016)

A quantum system is pure state controllable if and only if the
following condition is satisfied:

TpP(H) = span{X(p)|X € €}
for some p € P(H).

The proof is based on this proposition:

Acel <+ Xq,€€C
where £ is the Lie algebra generated by —iHjy, ..., —iH;.

Corollary

A quantum system is completely controllable if and only if

e = Kill(P(H))
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An example

Consider a controlled 4-level quantum system whose dynamical Lie
algebra £ is given by the matrices of the form:

—ja ¢ z d
e b f w

-z d ia e
f —-w ¢ —ib

where a,b,c,d,e,f € R and z,w € C.
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An example

Consider a controlled 4-level quantum system whose dynamical Lie
algebra £ is given by the matrices of the form:

—ia ¢ z d
e ib f w
-z d ia e
f —-w ¢ —ib
where a,b,c,d,e,f € R and z,w € C.
Let p = diag(1,0,0,0) and calculate:

0 —c¢c -z —d

e 0 0 0
XaP)=| 5 o o o |’

f 0 0 0

dim €(p) = 6 = dim T,P(H). Pure state controllability!
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Thank you for your attention!
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Introduction

INhomogenieties and fluctuations in quantum CohErent Phases by
ultrafast optical Tomography

@ Experiments: Prof. Daniele Fausti (P1.),
Theory: Prof. Fabio Benatti

@ Ultrashort dynamics in complex materials (sub-picosecond time
scales)

@ Cross-fertilization between quantum optics (quantum state
tomography) and condensed matter physics (pump-probe
experiments)

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



Introduction

Pump-probe experiments

PROBE PULSE

“1.'|l.'|! del!\«" .
PUMP PULSE

%Dprca property

Y

@ Pump pulse excites the material
@ Probe pulse (less intense) test the evolution after a delay time ¢

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



Introduction

Raman scattering

@ Raman scattering is a kind of inelastic scattering for light
@ One photon loses energy exciting one phonon in the material

(Stokes process)... or
One photon increases its energy destroying one phonon

(anti-Stokes process)

Virtae!
Erergy Safos
. L
[Rayleigh
Scattering
Stakes
Raman
Seattering
Excitation Anti-Stokes
Energy {i AmAN
Sraztering 4
Vibrational
Energy
h 4 ! eater
| v :
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The model

Probe-target interaction

@ Initial state (probe + target): |a){(a| ® ot
@ Refraction at the boundary

Her = 3 (n) + b+ b)) (aly s + aurl)

Jopp!

@ Raman scattering
o = 3 (5 )8+ (S sty
1! i

a,j, I,j, b are bosonic operators

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



The model

Dynamics and observables

@ Evolution operator

U(T) = Ubulk(T) Uref

Urer = exp(—iHrer) ,  Upui(T) = exp(—iT Hraman) (h=1),
@ Average of an observable Xpnot

(Xphot(7)) = Tr[U(7) |} (@] @ o U'(7) Xohar]

@ Coherent state of the probe

o) = exp (Zaxjaij - a;,ax,-) 0), agla)=ay, ayja)=0,
J

. 2 .
Qxj = exp <—0250)2> e'?

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



The model

Pump-target interaction

@ Same Hamiltonian for the light-matter interaction but different
approximation

@ Mean field for photons a; — af;
@ Explicit dependence on the polarization angle (with respect to x)

af = aficos(p), al = af;sin(0p)

@ Phononic operator shifted (b); = Tr(o:b) = Tr(ob;)
b — by =UL, Ui (7) Uj oo (1) b Upee(t) Upui(7) Uper

~ it i § Px P
~e b IT XN Oé)\/ O[)\,j+%
AN
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The model

Assumptions on the interaction (good for Quartz)

@ Zeroth order refraction matrix

@ First order refraction matrix depending on the phonon involved
(same for x)

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



The model

@ Phonons selected by the angle between the polarization of the
pump and the x axis (0p)

(©
A:b)r =

L:(b) = CEcos(29P) e—iRet=in/2
7 :(b)¢ = Cg sin(20p) e /et=im/2

Remember:

b _)Uref Ubu/k(T) f,ee( ) t)b Ufree(t ) Ubulk(T) Uret

e~ at=in/2

~ A it i E Px P
~ e IT XA\ Oé}\] aA'j—}-%
AN

i
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Experiment 1: mode occupation numbers

Mode occupation numbers (y polarization)

(Nye(7))1 =+ bl ? Fly
— (6" = B)tlac] (o] = e g1) Fhan()

A: FL,=0, Flom(T) =0,
E.: Fref O Féam(’r) = 07
Er: Fl=2nyn sin®(nd), Fham(T) = 0

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



Experiment 1: mode occupation numbers

|| . 5
g :
= F : 3
Eg a1
] {1 |
=2 o
g A gLt i l J,; |Ii af
Z2| a3k 1 T
il ' ¥
=g :
- : 5
—=1000 —500 [§] 500 1000 1500 2000 1074
a) Delay [fs]
A = 3 ’ piet
3 T 1 [ |
= ;s 2
. 3 i |
3 i = >0 Af
B :
= R : Y 5 | &
E [ I |
) o 10 o 30 370 Mg 390 &0
b) f[THz] c) Frequency [THz]

@ Pump at 45°: A and Er phonons excited
@ Orthogonal polarization (leading term): Et Refractive
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Experiment 1: mode occupation numbers

Mode occupation numbers (x polarization)

(Nek (7)) = €082 (D) a2 + (b + bk 2 Fiy
i (b" = B)tlowk! (lagerg| — law_g1) Flan(7)

A: FXo=—nlsin(2n{¥), FE.(T) = Yt c0s2(nY),

E.: FX =-nYsin@n?), FE.(7) = et c0s2(nD),
0 0

Er: ref = _277)((y)77)((y) COSZ(U)((X))v I):(fam( ) 0.
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Experiment 1: mode occupation numbers

5
=
—
r T
b= g
E&
5
=
To i
SR AT
= ol 27
o= i
i -1
Ef
g " -
1000 500 o 500 1000 1500 2000 «10°*
a) Delay [fs]
.—| - Y 10~
= . i |
I | LA
LY l 1| ; .l B
5 = iRy P
=1 | J N il ol
W el [ 4
= |
[ =
ELD EF) 380 390 400
b} Frequency [THz]

@ Pump at 0°: A and E; phonons excited

@ Parallel polarization: Raman and Refractive effects are both
visible
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Experiment 1: mode occupation numbers

Results Experiment 1 (summary)

@ Phase mismatch between Raman and refractive modulation

@ Selection of different phonons according to the polarization of the
pump

@ Different behaviour of Raman and refractive modulation
depending on the phonon involved and on the polarization
selected by the analyzer

@ Good agreement between theory and experiment

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



Experiment 2: quadrature

Quadrature: Homodyne detection + Time-resolved spectroscopy

LASER
SYSTEM

@ We combine two different experimental techniques to probe the
nonequilibrium response of the material

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



Experiment 2: quadrature

Average quadrature

@ Measured quantity: Current difference /

_agt+af ay — ako

IZZ(Cl'CX'*dT-d') PO i I "
G X Xj =X ) d s Uj
j V2 V2
@ Quadrature:
_ ] * o —i®)(s) T o ai®i(s)
Xs—\/ézj:@x/zje ™+ ayzie™ )ocl

@ Theoretical prediction:
(Xs(1)) = Atcos(wos + P¢)

where
A~ A1 +7sin(Qt)), &y~ 2xsin(Q).

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



Experiment 2: quadrature

Average quadratu

A~ A1 +7sin(Qt)), & ~ 2xsin(Qt).

o3f E

FT {arb. u.}

FT {ark. u.}

w10 b 5
—0.5 0.0 0.5 L 5 2.0

.0 1.
Time delay rips) Fraquency (THz}
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Experiment 2: quadrature

riance of the quadrature: work in progress

= 0.0 0.5 1.0 LS 2.0
Delay time r(ps)

@ For a coherent initial state: variance is time-independent up to
second order in the coupling

@ Higher order effects or (more likely) signature of a statistical
mixture

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



Conclusion

Conclusions and Outlook

Results:

@ Fully quantum model for Impulsive Stimulated Raman Scattering
(ISRS)

@ Outcomes of two different experiments correctly reproduced
Future work:

@ Complete tomography of the state of light (variance of the
quadrature)

@ Role of quantum correlations

@ More interesting (complex) dynamics in the sample (e.g.
interaction between the vibrational and electronic degrees of
freedom)

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)



Conclusion

Thank you for your attention!

Social dinner: Pizzeria "Al Barattolo" at 20.00.

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)
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