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19:00 Closing 
20:00 Dinner 



Abstracts 
 
Vincenzo Alba (SISSA) 
Entanglement and thermodynamics after a quantum quench in integrable systems 
 
Entanglement and entropy are key concepts standing at the foundations of quantum and 
statistical mechanics, respectively. In the last decade, the study of quantum quenches 
revealed that these two concepts are intricately intertwined. Although the unitary time 
evolution ensuing from a pure initial state maintains the system globally at zero entropy, 
at long time after the quench local properties are captured by an appropriate statistical 
ensemble with non zero thermodynamic entropy, which can be interpreted as the 
entanglement accumulated during the dynamics. Therefore, understanding the post-
quench entanglement evolution unveils how thermodynamics emerges in isolated 
quantum systems. An exact computation of the entanglement dynamics has been 
provided only for non-interacting systems, and it was believed to be unfeasible for 
genuinely interacting models. Conversely, here we show that the standard quasiparticle 
picture of the entanglement evolution, complemented with integrability-based 
knowledge of the asymptotic state, leads to a complete analytical understanding of the 
entanglement dynamics in the space-time scaling limit. Our framework requires only 
knowledge about the steady state, and the velocities of the low-lying excitations around 
it. 
 

 
Linda Anticoli (University of Udine) 
Model Checking Recursive Quantum Protocols 

With the growing interest in the fields of quantum computation and information, the 
possibility of expressing quantum algorithms, protocols and even quantum dynamics by 
using an high-level specification language has become crucial. For this reason, we have 
witnessed the birth of different higher level formalisms allowing to define and simulate 
automatically formal properties of such protocols, which work by abstracting from low-
level physical details. Nevertheless, with the possibility of "programming" quantum 
protocols comes the need to formally verify them, in order to test that both the 
specification and the protocols themselves are error-free. To this extent, formal methods 
such as temporal model checking has been investigated and extended to the quantum 
domain. We will show our work on Entangle, an integrated framework which provides the 
possibility to define and automatically verify recursive quantum protocols. 
 
 
Matteo Carlesso (University of Trieste) 
Can we understand if gravity is quantum? 

The recent development of interferometric and optomechanical systems gave the 
opportunity to experimentally approach the long-standing debate whether the gravity 
has a classical or a quantum intrinsic nature. I will present some of the recent proposals 
that have been made, highlighting their strong and weak points towards a possible 
solution.  
 
 
 



Andrea Colcelli (SISSA) 
Deviations from Off-Diagonal Long-Range Order and Mesoscopic Condensation in One-
Dimensional Quantum Systems 

A quantum system exhibits off-diagonal long-range order (ODLRO) when the largest 
eigenvalue 𝛌0 of the one-body-density matrix scales as 𝛌0~N, where N is the total number 
of particles. Putting 𝛌0~NC to define the scaling exponent C then C=1 corresponds to 
ODLRO and C=0 to the single-particle occupation of the density matrix orbitals. When 
0< C <1, C can be used to quantify deviations from ODLRO. In this talk I will present the 
study of the exponent C in a variety of one-dimensional bosonic and anyonic systems. 
 
 
Matteo Gallone (SISSA) 
The touchy business of formal computations 

Quantum mechanics requires to deal with unbounded self-adjoint operators on Hilbert 
spaces which means, in practice, to consider both their action and their domains. 
Despite that, domain issues are often regarded as "a minor problem". In this talk I will 
recall the main definitions, I will present with basic examples what can go wrong when 
one neglects this "minor issue" and I will discuss some more challenging problems 
including physical Hamiltonians that are central in my research activity: relativistic 
hydrogen atom, singular potentials and positronium. 
 
 
Giulio Gasbarri (University of Trieste) 
General Galilei covariant Gaussian maps and macroscopicity measure. 

Space-time symmetries in open quantum systems have been fully analyzed only in the 
special, but very important, case of a Markovian, completely positive (CP) and trace 
preserving (TP) dynamics and the structure of the dynamics fully characterized 
characterized by Holevo.  
This characterization play a major role in the description of several important physical 
phenomena such as environmental decoherence and relaxation phenomena. 
Furthermore, it is also relevant for the foundations of quantum mechanics, where an 
intrinsic non-unitary dynamics is postulated to solve the measurement problem, the black 
hole information paradox, or to combine principles of general relativity with quantum 
mechanics. 
Although the assumption of Markovianity is often well justified, recent technological 
advances have led to investigating several phenomena exhibiting memory effects, e.g. 
ultra fast chemical reactions, side band cooling and light harvesting in photosynthesis. 
In this talk we present a complete characterisation for effective non-Markovian Gaussian 
maps that are Galilei covariant. 
We further show how this result can be used to discuss measures of macroscopicity 
based on classicalization maps, specifically addressing dissipation, Galilean covariance 
and non-Markovianity. 
 
 
 
 
 
 



Giacomo Gori (University of Padova) 
On the performance of a MatterWave based gyroscope 

We discuss the sensitivity of a guided matter wave interferometer built to measure 
rotation. We consider the effect of the interaction and  temperature on the instrument 
with different interferometric schemes. 
 
 
Stefano Marcantoni (University of Trieste) 
Quantum Model for Impulsive Stimulated Raman Scattering 

Impulsive Stimulated Raman Scattering (ISRS) is a process in which a light pulse is 
inelastically scattered by a solid sample, exciting vibrations in the latter. This kind of 
light-matter interaction is usually investigated using time-resolved spectroscopic 
techniques, in particular pump-probe experiments in which a first intense light pulse, the 
pump, excites vibrational modes in the crystal and a second less intense light pulse, the 
probe, is used to test the sample dynamics. 
We present a fully-quantum theoretical model that we have recently developed for the 
description of ISRS in the context of pump-probe experiments. Some preliminary results 
of this model are validated with measurements performed on quartz. 
 
 
Silvia Pappalardi (SISSA, ICTP) 
Scrambling and entanglement spreading in regular chaotic long range 
spin chains 
 

We study scrambling, bipartite and multipartite entanglement dynamics in regular and 
chaotic long range spin chains, with a well dened semi-classical limit. We show that 
scrambling is a full quantum phenomenon, different from entanglement dynamics. It is 
characterized by a first semiclassical growth (up to the Ehrenfest time), followed by a 
fully quantum non-perturbative regime, symmetric around the recurrence time. While 
entanglement is a state dependent property, we associate scrambling with the growth of 
the operator's support. 
 
 
Davide Pastorello (University of Trento) 
Geometry of Quantum Mechanics in complex projective spaces 

The talk will be focused on the geometric Hamiltonian formulation of quantum mechanics 
where the projective Hilbert space (as a Kähler manifold) plays the role of phase space. 
Within such a framework quantum observables are represented by phase space 
functions, quantum states are described by Liouville densities (phase space probability 
densities), and Schrödinger dynamics is induced by the flow of a Hamiltonian vector field 
w.r.t. a natural symplectic structure. Then I will discuss how this viewpoint leads to a new 
approach to quantum control theory based on the Riemannian structure of the projective 
space. 
 
 
 
 
 



Angelo Russomanno (Scuola Normale di Pisa and ICTP) 
Floquet time crystal in the Lipkin-Meshkov-Glick model 

In this talk I will discuss the existence of time-translation symmetry breaking in a kicked 
infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick 
model. This Floquet time crystal is robust under perturbations of the kicking protocol, its 
existence being intimately linked to the underlying Z_2 symmetry breaking of the time-
independent model. I show that the model being infinite range and having an extensive 
amount of symmetry-breaking eigenstates is essential for having the time-crystal 
behavior. In particular, I discuss the properties of the Floquet spectrum, and show the 
existence of doublets of Floquet states which are, respectively, even and odd 
superposition of symmetry-broken states and have quasienergies differing of half the 
driving frequencies, a key essence of Floquet time crystals. Remarkably, the stability of 
the time-crystal phase can be directly analyzed in the limit of infinite size, discussing the 
properties of the corresponding classical phase space. 
 
 
Raffaele Scandone (SISSA) 
Non-linear Schroedinger equation with point interactions 

A central topic in mathematical physics is the rigorous investigation of many body 
quantum systems subject to very short range interactions. The dynamics of such systems 
can be efficiently described by non-linear Schroedinger equations with singular 
potentials. In this talk, I will discuss a recent result on the well-posedness of the Hartree 
equation with a point interaction in R3, in a suitable class of singular Sobolev spaces. I 
will also discuss various open problems. 
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TEQ is a FET OPEN H2020 project  

www.tequantum.eu 

Trieste Junior Quantum Days: a big success for the second edition 

 

 
Quantum mechanics draws big attention, as proved by the success of the workshop 

coordinated by Angelo Bassi (UniTs-INFN), Fabio Benatti (UniTs-INFN), Alessandro 

Michelangeli (LMU Munich) and Andrea Trombettoni (CNR-IOM Trieste) and, as local 

organizers, Matteo Carlesso (UniTs-INFN) e Matteo Gallone (SISSA). 

 

On Friday, May 11, the second edition of the workshop Trieste Junior Quantum Days, was 

held. The event is conceived as a platform for young students and researchers to discuss 

on research matters in quantum physics. This year’s edition received an even more 

enthusiastic response compared to the 2017 edition, with a tripled number of participants 

and a significant presence of Master students, not only in Physics but also in Chemistry. 

The junior nature of the event has to be highlighted: speakers were PhD or young Postdocs 

of the major academic institutions of the Region and beyond: The universities of Trieste 

and Udine, the International School for Advanced Studies (SISSA), the International Centre 

for Theoretical Physics (ICTP) and the University of Padua. 

 

Compared to the previous edition, the first day of the Trieste Junior Quantum Days 2018 

attracted attention and was massively attended by participants beyond the regional borders 

and Triveneto, proving the national and international interest raised by the workshop. 

Among the represented institutions there were: University of Milano-Bicocca, University La 

Sapienza of Rome, University of Bologna, University of Bari Aldo Moro and LMU of Munich 

(Germany). 

 

The second date of the Trieste Junior Quantum Days is Friday, May 18, with a new round 

of six speakers. For more information, please visit http://tequantum.eu/. 
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Model Checking Recursive Quantum Protocols

Linda Anticoli

Dept. of Mathematics, Computer Science and Physics - University of Udine, Italy.
School of Computing Science - Newcastle University, UK.
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June 1996
Ariane 5 launcher failure

"Loss of information due to specification and design errors in the software of the inertial
reference system."
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Motivations

Quantum information is more fragile than classical one

⇓

flaws in the design of quantum protocols and noise in their physical
implementation
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Motivations

State of the art:
Formal, higher–level specification of quantum algorithms
Quantum Programming Languages

- J. W. Sanders and P. Zuliani. "Quantum Programming" (2000)
- A. van Tonder. "A lambda calculus for quantum computation" (2003)
- A.S. Green, , et Al. "Quipper: A Scalable Quantum Programming
Language" (2013).

Formal verification of quantum algorithms
Quantum Model Checkers

- P. Mateus, et Al. "Towards model-checking quantum security
protocols" (2007)
- Y. Feng, et Al. "QPMC: A Model Checker for Quantum Programs
and Protocols" (2015)
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Motivations

Desiderata:
High-level formalisms allowing to define and automatically verify formal
properties of algorithms abstracting away from low–level physical details:

- L. Anticoli, et Al. "Towards quantum verification: From Quipper circuits to
QPMC" (2016)
- L. Anticoli,et Al. "Entangλe: A Translation Framework from Quipper
Programs to Quantum Markov Chains" (2017).
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Preliminaries and Notation

Question 1
What is a quantum algorithm (or quantum protocol)?

⇓

Quantum Computation and Information

Question 2
What does model–checking mean?

⇓

Formal Methods in Computer Science
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Quantum Computation and Information – Remarks

Paradigm of computation concerned with computational tasks, and
information processing achieved through quantum mechanical systems.

Efficient solutions for classically hard problems

Integer Factoring n = log2N

- Classical Solution -> ≈ exp[O(n1/3log2/3n)];
- Shor’s Algorithm -> ≈ O(n3);

Unsorted Database Search
- Classical Solution -> O(N);
- Grover’s Algorithm -> O(N1/2);
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Quantum Computation and Information – Remarks

Efficiency
Parallelism: linearity of space and operators;
Interference: the states interfere deleting the “wrong" ones, while
increasing the probability of the desired outcome.
Correlations: non–local correlations between the outcomes of
measurements performed on different qubit strings.
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Qubit

Superposition of States
Quantum analogue of a classical bit. State of a 2-level system:

|ψ〉 = α|0〉+ β|1〉

where |α|2 + |β|2 = 1 and α, β ∈ C

Quantum Register
Quantum analogue of a classical bit string composed by n–qubits:

|ψtot〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉

allowing 2n superposed basis states.
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Quantum Circuit Model

Quantum Gates
Quantum counterpart of classical logic gates.

n qubits −→ quantum gates: 2n × 2n unitary operators.

Single Qubit Gates

σx =

(
0 1
1 0

)
H =

1√
2

(
1 1
1 −1

)
Controlled Gates 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


tipically used to create correlations.
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Quantum Circuits
Quantum algorithms are represented by quantum circuits in which the
computation is realised by the following steps.

1 State preparation;
2 Application of unitary operators;
3 Measurement.

|0〉 H

Figure: Quantum Coin Tossing Circuit.
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Applications

Quantum Teleportation

Quantum information (qubits) is transmitted from a location to another by
means of classical communication and previously shared entangled couples
between sender and receiver.

Quantum Cryptography
Use of quantum effects to perform cryptographic tasks.
Measurement disturbs the data –> eavesdropper can be detected!

Refs:
C. H. Bennett, et Al. "Teleporting an Unknown Quantum State via Dual Classical and
Einstein-Podolsky-Rosen Channels"
C. H. Bennett, et Al. "Quantum cryptography: Public key distribution and coin tossing"
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Issues

Problem 1
Quantum circuits are low level descriptions of computation.

Problem 2
Quantum circuits are not Turing complete, no recursion.
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Quantum Programming Languages

Solution1
Quantum Programming Languages: abstract the computation from the
physical low–level detail to a human readable, and formally defined
high–level description.

Quantum pseudocode
QCL
Q Language
qGCL
Quantum Lambda Calculus
Quipper
LIQUi|〉
. . .
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Quipper

Functional programming for quantum computation.
Based on Haskell;
The semantics of a Quipper program is given in terms of extended
quantum circuits;
Allows to generate a graphical representation of the implemented
circuit, but not of quantum programs;
Provides three different of simulators.

A Quipper program is a function that inputs some quantum and classical
data, performs state changes on it, and then outputs the changed
quantum/classical data.
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Quipper example

qCoinFlip :: Qubit -> Circ Bit
qCoinFlip q = do

q <- qinit False
hadamard_at q
c <- measure q
return c

qCoinFlipRec :: Qubit -> recCirc ()
qCoinFlipRec q = do

q <- qinit False
hadamard_at q
c <- measure q
[...]
if c==0 then

return c
else

return qCoinFlip(q)

|0〉 H

?
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Quantum Markov Chains

Solution 2
Data–structures allowing to model recursion in quantum algorithms:
Quantum Markov Chains.

Quantum Markov Chain
Tuple (S ,Q,AP, L), where:

S is a countable (finite) set of classical states;
Q : S × S → SI(H) is the transition matrix where for each s ∈ S ,the
operator

∑
t∈S Q(s, t) is trace-preserving;

AP is a finite set of atomic propositions;
L : S → 2AP is a labelling function.
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Example

s0 s1

s2

s3

H
P0

P1

I

I

Figure: QMC for Quantum Coin
Tossing.

s0 s1

s2

s3

H

I

P0

P1

I

Figure: QMC for Recursive Quantum
Coin Tossing.

QMCs are more expressive! So, let’s use them.
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Equivalent Behaviour

Bisimilarity
A quantum circuit can always be translated in a QMC with the same
behaviour, while the converse is not possible.

(Boring proofs in references)

Now what?
Formal, high–level language to express quantum computations �X

Formal definition of recursion in quantum programs �X

Formal verification of quantum programs �
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Quantum Model Checking (1)

Model Checking

Exhaustive exploration of the state space of a system to verify (or falsify) if
a temporal property is satisfied.

Step–by–step
Abstract model of the system;
Temporal logic to specify the properties.
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Quantum Model Checking (2)

Abstract Model
Graph structure representing the computation steps. Classically: Kripke
structures, LTS, DTMC.
QMC can be used as a model for quantum computation!

Temporal Logics
Modal logics used to express time–dependent properties.
Example: "In all the reachable states of the system, property A never holds"

(a) LTL

(b) CTL

(a) (b)
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Quantum Model Checking (3)

Temporal Operators

f ¬f AXf AFf AGf

EXf EFf EGf A(¬f Uf ) E(¬f Uf )

Invariant and Eventually

A (i.e., for all computation paths) and E (i.e., eventually, for some
computation path).
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Quantum Model Checking (4)

QCTL
Quantum Computation Tree Logic, it provides also the operators:

Q∼ε[g ];
Q =?[g ];
qeval((Q =?)[g ], ρ);
qprob((Q =?)[g ], ρ) = tr(qeval((Q =?)[g ], ρ))).
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QCTL

Quantum Computation Tree Logic
A QCTL formula is a formula over the following grammar:

Φ ::= a | ¬Φ | Φ ∧ Φ | Q∼ε[Φ] state formula

φ ::= XΦ | ΦU≤kΦ | ΦUΦ path formula

where a ∈ AP , ∼ ∈ {.,&,h}, E ∈ SI(H), k ∈ N.

Example

Q >= 1 [F (s = 5)]
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What we did: from Circuits to QMCs

Quip-E
We isolated and extended a Quipper fragment that we called Quip-E which
allows the definition of both standard and tail recursive quantum programs.

Entangλe
We defined a mapping from Quip-E programs to QMCs. We start by
considering a quantum program generated by Quip-E and we define a
bisimilar QMC.

Model Checking Recursive Quantum Protocols 25 / 36



Formal definition of Quip-E program

Definition
A Quip-E program is a circuit in which the result of a measurement is
evaluated and could result in a loop.

Body of Quip-E program

reset: initializes the qubits to |0〉;
unitary: unitary operator applied to a list of qubits;
measure: application of measurement operators to a list of qubits
resulting in a list of bits;
dynamic lift: A bit is lifted to a boolean through the dynamic lift
Quip- per operator;
if-then-else: evaluation of a Boolean expression;
exit On: loop instruction.
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From Quip-E to QMC - intuitively
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From Quip-E to QMC - intuitively
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From Quip-E to QMC - intuitively
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From Quip-E to QMC - intuitively
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Operational Semantics of Quip–E (1)

(reset_at qk , L)
Mk

0−−→ (___, L) (reset_at q, L)
Mk

1−−→ ((X_at qk , L)

(U_at [qi1,...,qij], L)
Ui1,...,ij−−−−→ (___, L)

(m ← measure qk , L)
Mk

i−−→ (___, L[L(m) = i ]})
for i ∈ {0, 1}

(bool <- dynamic_lift m, L)
I−→ (___, L[L(bool) = L(m)])
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Operational Semantics of Quip–E (2)

L(bool) = i

(if (bool) Body_C1 else Body_C0, L)
I−→ (Body_Ci , L)

for i ∈ {0, 1}

(Body_C1, L)
S−→ (Body_C1’, L′)

(Body_C1 Body_C2, L)
S−→ (Body_C1’ Body_C2, L

′)

(Body_C1, L)
S−→ (___, L′)

(Body_C1 Body_C2, L)
S−→ (Body_C2, L

′)

(___, L)
I−→ (___, L)
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Implementation

We implemented Entangλe using the Transformer module of
Quipper. The input quantum program is a Quip-E function and the output
QMC is a QPMC model.

1 The gates in the quantum circuit are grouped together with their
associated qubits, preserving the execution order;

2 we compute the matrix representation of the quantum gates, taking
into account also the conditional branches and the initialization
operators;

3 the last step is the conversion of the list of transitions into QPMC
code.
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testInit :: (Qubit) -> Circ RecAction
testInit (q) = do

reset_at q
hadamard_at q
ma <- measure q
bool <- dynamic_lift ma
exitOn bool

s0

s1T

s1F

s2 s3

s4T

s4F

X

M0

M1

H

M0

M1

I

qmc

const matrix A1_T = M0;
const matrix A1_F = M1;
const matrix A2 = PauliX;
const matrix A3 = Hadamard;
const matrix A4_F = M0;
const matrix A4_T = M1;

module testInit
s: [0..4] init 0;
b0: bool init false;

[] (s = 0) -> <<A1_T>> : (s’ = 1) &
(b0’ = true) + <<A1_F>> : (s’
= 1) & (b0’ = false);

[] (s = 1) & b0 -> (s’ = 2);
[] (s = 1) & !b0 -> <<A2>> : (s’ =

2);
[] (s = 2) -> <<A3>> : (s’ = 3);
[] (s = 3) -> <<A4_F>> : (s’ = 4) &

(b0’ = false) + <<A4_T>> : (s’
= 4) & (b0’ = true);

[] (s = 4) & !b0 -> (s’ = 0);
[] (s = 4) & b0 -> true;

endmodule
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Conclusion and Questions

TO–DO
optimization of Entangλe to verify more complex quantum
programs;
optimization from the model checking point of view, involving the
automatic verification of more complex properties, i.e., entanglement
and other quantum effects;
translation and verification of more complex, real-world quantum
protocols;
simulation (and translation) of quantum dynamics;
spatial properties verification.
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Introduction Unboundedness Natural Domains Dirac-Coulomb operators

Introduction

“No theorist in his right mind would
have invented quantum mechanics
unless forced by data”

– Craig Hogan

From Axioms:

Phase space: Complex Hilbert space (H = L2(R3, dx))

Observables: Self-adjoint operators on H
Time evolution: Unitary 1-parameter group generated by
Schrödinger equation
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Unboundedness

Unboundedness is unavoidable in Quantum Mechanics:
Heisenberg’s uncertainty principle:

[X ,P] = i

Proof:

[X n,P] = inX n−1 ⇒ ‖[X n,P]‖ = n‖X n−1‖

‖[X n,P]‖= ‖X nP − PX n‖≤ 2‖X n‖‖P‖≤ 2‖X n−1‖‖X‖‖P‖

n

2
≤ ‖X‖‖P‖ ∀n ∈ N

Scientists in the ’20-’30 need to develop the theory of unbounded
operators (von Neumann, Stone, . . . )
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Unbounded operators

Unbounded operator

An unbounded (= not necessarily bounded) operator is a linear
map

T : D(T ) ⊂ H → H

The assignment of the domain is crucial!

Different domains assigned to the same formal operator define
different operators:

eigenvalues

scattering properties

invertibility

. . .
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What can go wrong? (1/2)

Statement

Time evolution associated to i∂tψ = −∂2xψ is unitary (e.g.
‖ψ(t, x)‖L2(I,dx) = ‖ψ(0, x)‖L2(I,dx)) (I = (0, 1) ⊂ R)

{
i∂tψ(t, x) = −∂2xψ(t, x)

ψ(0, x) = e
i+1√

2
x ∈ L2(I, dx)

Look for solutions ψ(t, x) = eωtekx :

Solution: ψ(t, x) = e−te
i+1√

2
x

‖ψ(t, x)‖2L2(I,dx) = e−2t‖ψ(0, x)‖2L2(I,dx)
t→+∞−→ 0

Source of problem: ψ(0, x) /∈ domain of self-adjointness!
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What can go wrong? (2/2)

Statement

Eigenfunctions associated to different eigenvalues are orthogonal

−i
d

dx
ψk(x) = kψk(x) L2(I, dx)

If k ∈ C, ψk(x) = e ikx ∈ L2(I, dx) is an eigenfunction.
To see if they are orthogonal we need to evaluate

〈ψk , ψj〉L2(I,dx) =

∫ 1

0
e−ikxe ijx dx

〈ψj , ψk〉L2(I,dx) =

{
i−ie i(j−k)

j−k j 6= k

1 j = k
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Handbook of Definitions

Closed. T is closed iff D(T ) with the operatorial scalar product:

〈ψ,ϕ〉T := 〈Tψ,Tϕ〉H + 〈ψ,ϕ〉H

is a Hilbert space (it is a Banach space).

Closable/Closure. T , D(T ) = D(T )
‖·‖T

Adjoint T ∗ If D(T ) is dense in H then one defines

D(T ∗) := {f ∈ H | ∃η ∈ H s.t. 〈f ,Tϕ〉H = 〈η, ϕ〉H, ∀ϕ ∈ D(T )}

T ∗f := η

Symmetric. 〈ϕ,Tψ〉H = 〈Tϕ,ψ〉H ∀ϕ,ψ ∈ D(T ). (equiv. T ⊂ T ∗)

Self-adjoint. T = T ∗ and D(T ) = D(T ∗)

Essentially self-adjoint. T is self-adjoint.

Self-adjoint extension. T symmetric, T ⊂ T ⊂ Ts.a. ⊂ T ∗.
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Beyond toy examples

For differential and multiplicative operators, non-self-adjointness is
due to

boundary conditions

singular points of the operator

In principle one can choose a lot of domains for unbounded
operators. If we want to model nature there are some natural
choices.
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Natural domains

Formal operator T =
∑

j cj(i∇)j + V (x), Hilbert space

H = L2(Ω), Ω ⊂ Rn open:

Minimal domain: D(Tmin) = C∞c (Ω \ Γ).
Γ = {x ∈ Ω | V (x) is ’too singular’}
Maximal domain: D(Tmax) = {f ∈ H|Tf ∈ H}.
T acts distributionally.

→ Minimal operator Tmin: (T ,D(Tmin))

→ Maximal operator Tmax : (T ,D(Tmax))

Tmin ⊂ Tmax{
Tmin symmetric

D(Tmin) is dense in H
=⇒ Tmax = T ∗min
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Relativistic Quantum Mechanics

Dirac found the right equation to describe the motion of a 1
2 -spin

particle in the relativistic regime:

i~∂tΨ(t, x) = HΨ(t, x)

Hfree = −ic~α ·∇ + βmc2

αj =

(
0 σj
σj 0

)
, β =

(
1 0
0 −1

)
Ψ(t, x) is a spinor, i.e. Ψ(t, x) ∈ L2(R3,C4). This means

Ψ(t, x) =


Ψ1(t, x)
Ψ2(t, x)
Ψ3(t, x)
Ψ4(t, x)


e− spin up
e− spin down
???
???
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Relativistic Hydrogen Atom

Model of the hydrogen atom with relativistic kinetic energy

Hν = −i~cα ·∇ + βmc2 +
ν

|x |
1

It has been used to compute bond states energies:

En = mc2
(

1 +
ν2/c2

(n +
√

1− (ν2/c2))2

)−1/2
Correct non-relativistic limit

En −mc2
c→∞−→ − mν2

2(n + 1)2

Correct experimental prediction (fine-structure corrections)

Break-down of the formula: If |ν| > c2 (Z ≈ 137) we have
imaginary eigenvalues!
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History of the problem

c = ~ = 1

1948 - 1955: Rellich and Kato proved independently essentially
self-adjointness for |ν| < 1

2

1970: Rejtö proved essentially self-adjointness for |ν| < 3
4

1971-1972: Weidmann, Schmincke, Rejtö and Gustafsson proved

Essential-self adjointness for |ν| ≤
√
3
2 (well-posedness)

Non essential self-adjointness for |ν| >
√
3
2 (ill-posedness)

2007: Voronov, Gitman, Tyutin classification ’a la von Neumann’
of the extensions (abstract)

2013: Hogreve attempt of classification in terms of boundary
conditions at r = 0

(M. Gallone, Self-adjoint extensions of Dirac Operator with Coulomb Potential,

Advances in Quantum Mechanics, Springer, 2017)
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Classification of extensions

2018: M.G. and A. Michelangeli proved that if ν ∈ (
√
3
2 , 1) then

f ∈ D(H∗) have asymptotics

f = ar−
√
1−ν2 + br

√
1−ν2 + o(r1/2) as r → 0

The choice of γ ∈ R ∪ {∞} defines a self-adjoint realisation
through the boundary condition

a = (cνγ + dν)b

cν and dν are explicit (but not very illuminating!)

Estimate of the ground state

|E0(γ)| =
|γ|

|γ|
√

1− ν2 + 1

(M. Gallone and A. Michelangeli, Self-adjoint realisations of the Dirac-Coulomb

Hamiltonian for heavy nuclei, Analysis and Math Phys, 2018)
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Eigenvalues

Boundary condition =⇒ explicit formula for EV

F(E ) = cνγ + dν

-1.0 -0.5 0.5 1.0
arctan(γ)

-1.0

-0.5

0.5

1.0
E

(M. Gallone and A. Michelangeli, Discrete spectra for critical Dirac-Coulomb

Hamiltonians, Journal Math Phys, 2018)
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Thank you for your attention
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Entanglement and thermodynamics in
out-of-equilibrium systems

Vincenzo Alba1

1SISSA, Trieste

Trieste, 18/05/2018

Vincenzo Alba Entanglement spreading



Outline

◮ Complexity of out-of-equilibrium quantum matter.

◮ Entanglement and quenches.

◮ Goal: Entanglement dynamics after quantum quenches.

◮ Semiclassical picture & Integrability.

◮ von Neumann vs Rényi entropies.

[V.A. and P. Calabrese, PNAS 114, 7947 (2017)]

[V. Alba and P. Calabrese, Phys. Rev. B 96, 11541 (2017)]

[V. Alba and P. Calabrese, J. Stat. Mech. (2017) 113105]

[V. Alba and P. Calabrese, arXiv:1712.07529 ]

[V. Alba, arXiv:1706.00020 ]
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Out-of-equilibrium isolated many-body systems

◮ Question: How do simple descriptions (thermodynamics) emerge in

out-of-equilibrium isolated sytems?

A ∪ B = isolated universe

Unitary dynamics under Hamiltonian H

L, ℓ→ ∞,with ℓ≪ L

time → ∞

◮ Long-time limit of local reduced density matrix? Is it thermal?

ρA ≡ TrBρA∪B
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Wonders of out-of-equilibrium systems
P. P. Rubens, Vulcan forging the Thunderbolts of Jupiter (1637), Prado Museum

“sudden” global
manipulation

isolated quantum
system (T=0)

Theory toolbox:

- Integrability

- DMRG

- Exact diagonalization

- Field Theory methods

Challenge: No unifying theory
framework

|Ψ(
t)〉

= e
−iHt |Ψ(

0)〉

Quantum quench, Floquet dynamics,
adiabatic quench (ramping)
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Out of equilibrium physics in cold-atom experiments
[Kinoshita et al., Nature 440, 900 (2006)]

[Greiner, Nature (2002)]

[Hofferberth, Nature (2007)]

[Trotzky, Nature Phys. (2012)]
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Quantum quenches in isolated many-body systems

Quantum quench protocol

◮ Initial state |Ψ0〉|Ψ0〉|Ψ0〉 ⇒ unitary evolution under a many-body Hamiltonian HHH

{|ψα〉} eigenstates of H |Ψ0〉 =
∑

α cα|ψα〉 |Ψ(t)〉 =
∑

α e iEαtcα|ψα〉

◮ For a generic observable Ô:

〈Ψ(t)|Ô|Ψ(t)〉 =
∑
α,β

e i(Eα−Eβ)(Eα−Eβ)(Eα−Eβ)tc∗αcβÔαβ

◮ Long time ⇒ diagonal ensenble.

〈Ψ(t)|Ô|Ψ(t)〉 = 〈Ô〉DE =
∑

α
|〈Ψ0|ψα〉|

2Ôαα

cα ≡ 〈Ψ0|ψα〉
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Equilibration in integrable models

◮ Integrability ⇒ Local (quasi-local) conserved quantities IjIjIj .

[H, Ij ] = 0, ∀j and [Ij , Ik ] = 0, ∀j , k I2 ≡ H

◮ Include extra charges in Gibbs ⇒ Generalized Gibbs Ensemble (GGE).

ρGGE = 1
Z
exp

(∑
j βjIj

)

[Jaynes, 1957;Rigol,2008]

◮ Generalized microcanonical principle.
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Entanglement: quantum mechanics at its strangest

◮ Einstein-Podolsky-Rosen paradox:

◮ Perfect anticorrelated spin measurements.

Science 356, 1140 (2017)
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Entanglement: quantum mechanics at its strangest

◮ Einstein-Podolsky-Rosen paradox:

◮ Perfect anticorrelated spin measurements.

◮ Haiku view on entanglement:

Up here down there, these bonds are

stronger than time. N.B.

Science 356, 1140 (2017)
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Entanglement entropy in many-body systems

◮ Consider a quantum system in d dimensions in a pure state |Ψ〉

ρ ≡ |Ψ〉〈Ψ|

◮ If the system is bipartite:

H = HA ⊗ HB → ρA = TrBρ

◮ How to quantify the entanglement (quantum correlations) between
A and B?

◮ von Neumann entropy SA = −TrρA log ρA = −
∑

i λi log λi

◮ Rényi entropies S
(n)
A = − 1

n−1 log(Trρ
n
A) = − 1

n−1 log(
∑

i λ
n
i )
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Entanglement dynamics: Semiclassical picture

time

S
A

linear

saturating

◮ Extensive amount of energy ⇒ quasi-particles produced uniformly in the

initial state.

SA(t) ∝ 2t
∫

2|v |t<ℓ

dλv(λ)f (λ) + ℓ
∫

2|v |t>ℓ

dλf (λ)

◮ Requires quasi-particles group velocities v(λ)

◮ f (λ)f (λ)f (λ) cross-section for quasi-particle production.

◮ Exact for free models.
[Fagotti, Calabrese, 2008]

[Calabrese, Cardy, 2005]
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Integrable models (à la Bethe ansatz)

◮ Integrability ⇒ stable families of “single particle” excitations.

◮ Generic eigenstate:

λn,jλn,jλn,j = particle quasimomentum ≈ rapidity.

|{λn,j}〉

◮ Thermodynamic limit ⇒ macrostate ⇒ particle and hole densities

|{ρn(λ), ρ
(h)
n (λ)}〉

◮ # equivalent microscopic eigenstates ⇒ Yang-Yang entropy

SYY ≡ L
∑

n

∫
dλ[ρ

(t)
n log ρ

(t)
n − ρn log ρn − ρ

(h)
n log ρ

(h)
n ]
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Quenches in integrable models

|ρn〉|ρn〉|ρn〉

◮ Key idea: Steady state ⇒ macrostate |ρn〉|ρn〉|ρn〉.

◮ Integrability ⇒ |ρn〉|ρn〉|ρn〉 and S [ρn]S [ρn]S [ρn] can be determined analytically.

eS[ρn] = #eS[ρn] = #eS[ρn] = # of representative eigenstates

S [ρn]S [ρn]S [ρn] = thermodynamic entropy
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Steady state entanglement entropy

◮ Steady-state entanglement entropy density is the thermodynamic entropy.

SA/ℓ = (TrρGGE log ρGGE )/L =
∑

n

∫
dλsn(λ)

◮ Cross section for quasi-particle production is fixed f (λ) = sn(λ)f (λ) = sn(λ)f (λ) = sn(λ):

SA(t)
t→∞
−−−→ ℓ

∑
n

∫
dλsn(λ)
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Entangling quasi-particles

◮ How to identify the entangling quasi-particles?

[J.-S. Caux and F. Essler, Phys. Rev. Lett. 110, 257203 (2013)]

◮ Local observables ⇒ dynamics determined by low-lying excitations around

steady state |ρn〉|ρn〉|ρn〉.

|ρn〉|ρn〉|ρn〉
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Theoretical program

∞t

quantum quench
t=0 Ψ0

t=∞ steady state

representative

state

Semiclassics low−lying
excitations

Post−quench dynamics

SA(t) ∝
∑

k

[
t
∫

|vk |t<ℓ

dλvk(λ)sk(λ) + ℓ
∫

|vk |t>ℓ

dλsk(λ)
]
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Model and quenches

◮ Spin-1/2 anisotropic Heisenberg (XXZ ) chain.

HXXZ =
L∑

i=1

(S+
i S−

i+1 + S−
i S+

i+1 +∆Sz
i S

z
i+1)

◮ Initial states:

|N, ϑ〉 ≡ 1√
2
e iϑ/2

∑
j σ

y

j (|↑↓〉
⊗L/2

+ |↓↑〉
⊗L/2

)

|UP , ϑ〉 ≡ 1√
2
e iϑ/2

∑
j σ

y

j |↑↑ · · · 〉

|MG 〉 ≡ ( |↑↓〉−|↓↑〉√
2

)⊗L/2

Tilted Néel

Tilted ferromagnet

Majumdar-Ghosh (Dimer)

∆ ≥ 1
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Numerical checks: Full time evolution

◮ XXZ chain with ∆ = 2: Quench from Néel state.

0 0.5 1 1.5 2

v
M

t/

0

0.1

0.2

0.3

0.4

S
/

tDMRG
Conjecture

iTEBD
Extrapolations

= 5 - 20

ℓ

ℓ
ℓ

SA(t) ∝
∑

k

[
t
∫

|vk |t<ℓ

dλvk(λ)sk(λ) + ℓ
∫

|vk |t>ℓ

dλsk(λ)
]

◮ Fairly good agreement apart from finite size (time) corrections.
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Numerical checks: Linear growth

iTEBD from [Fagotti et al., 2015]
◮ Quench in the XXZ chain.

S ′ ≡ dS(vM t)
d(vM t)

2 4 6 8

time t

0

0.25

0.5

0.75

S’

∆=2
∆=4

0 2 4 6 8 10 12

0

0.2

0.4

S’

ϑ=0    ∆=1
ϑ=0    ∆=2
ϑ=0    ∆=4
ϑ=0    ∆=10
ϑ=π/6 ∆=2
ϑ=π/9 ∆=8

0 4 8 12 16
-0.2

0

0.2

0.4

0.6

S’

ϑ=π/3 ∆=4
ϑ=π/6 ∆=4
ϑ=π/3 ∆=2

(a) Neel

(b) UP 

(c) Dimer (MG)

SA(t) ∝
∑

k

[
tt

∫
|vk |t<ℓ

dλvk(λ)sk(λ) + ℓ
∫

|vk |t>ℓ

dλsk(λ)
]

Vincenzo Alba Entanglement spreading



Conclusions

◮ Entanglement dynamics after quantum quenches in integrable
models.

◮ Improved Semiclassical picture using integrability.

◮ Entanglement dynamics encoded in the steady state and low-lying
excitations around it.
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Thanks!
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Non-linear Schrödinger equation

with point interactions

Ra�aele Scandone (SISSA Trieste)

Trieste Junior Quantum Days, 18 May 2018

Based on joint works with Vladimir Georgiev, Alessandro Michelangeli and
Alessandro Olgiati.
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Heuristic model

Formally, consider the equation

i∂tu = −∆x +
N∑
j=1

µj δ(x − yj) +N (u),

where {y1, . . . yN} are distinct points in Rd , which supports delta-like
interactions of strenght {µ1, . . . µN}, and N (u) is a non-linear interaction
potential.

Why we consider point interactions?

Why we consider non-linear potentials?

How to give a rigorous meaning to the equation?
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Point interactions, motivations

−∆x +
N∑
j=1

µj δ(x − yj)

provides an heuristic model for a quantum particle subject to a "contact
potential", created by point sources of strenght µy centered at yj .

Kronig and Penney (1931) consider the 1D case as a model for a
non-relativistic electron moving in a �xed crystal lattice.

Bethe, Peierls (1935) and Thomas (1935) consider the 3D case with
y = 0. Introducing the center of mass and relative coordinates, this
provides a model for a deuteron with idealized zero-range nuclear force
between the nucleons.

Appears in many contexts: nuclear physics, solid state physics etc.

Provide "solvable" approximation of more complicated and realistic
phenomena, governed by very short range interactions

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 3 / 14



Non-linear potentials, motivations

Consider the 3D many-body Hamiltonian

HN :=
N∑
j=1

−∆xj +
∑

1≤j<k≤N
wN(xj − xk),

where wN is a pontential governing the interaction between the particles.
Assume Bose-Einstein condensation at time t = 0:

ψ
(N)
0

(x1, . . . , xN) ≈
∏N

j=1
u0(xj), N � 1.

Then we have condensation at any time t > 0:(
e itHNψ

(N)
0

)
(x1, . . . , xN) ≈

∏N
j=1

u(t, xj), N � 1,{
i∂tu = −∆u +N (u)

u(0, x) = u0(x),
N (u) =

{
(w ∗ |u|2)u wN = N−1w

|u|2u wN = N2w(Nx)
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Non-linear potential with point interactions

HN,ε :=
N∑
j=1

(
−∆xj + Vε(xj)

)
+

∑
1≤j<k≤N

wN(xj − xk),

where Vε are smooth potentials, shrinking around the origin in such a way
to create a delta-like pro�le as ε→ 0. Assume Bose-Einstein condensation
at time t = 0.

Is condensation preserved, at least for short times?

Can we rigorous prove that the evolution of the condensate is

governed by the equation

i∂tu = −∆u + µδ(x) +N (u)

in the limit N → +∞ and ε→ 0?

Work in progress with A. Michelangeli and A. Olgiati. As a �rst step, we
need to show existence of solutions for the limit equation.
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Rigorous construction of point interactions

Assume, for simplicity, a single center at the origin.

In dimension one, consider the quadratic form

Q(f , g) :=

∫
R
∂x f · ∂xg dx + µf (0)g(0), f , g ∈ H1(R).

From Q, we realise −∆x + µδ(x) as a self-adjoint operator on L2(R).

In higher dimension, we need a di�erent approach. Suppose d = 3.
The symmetric operator −∆|C∞0 (R3\{0}) has a one-parameter family of
self-adjoint extension {−∆α}α∈(−∞,+∞]. For λ > 0,

D(−∆α) =

{
ψ ∈ L2(R3) : ψ = Fλ +

Fλ(0)

α +
√
λ

4π

e−
√
λ|x |

4π|x |
: Fλ ∈ H2(R3)

}

(−∆α + λ)ψ = (−∆ + λ)Fλ
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Asymptotics of the wave function

The parameter α is related to the scattering lenght of the system at
the centre of interaction. Indeed, a generic element ψ ∈ D(−∆α)
satis�es the so called Bethe-Peierls contact condition

ψ(x) ∼
x→0

1

|x |
− 1

s
, s = −(4πα)−1,

which is typical for the low-energy behaviour of an eigenstate of the
Schrödinger equation for a quantum particle subject to a very short
(virtually zero) range potentials, centered at the origin and with
s-wave scattering lenght s.

When α = +∞, then no actual interaction is present at the origin
(the s-wave scattering lenght is zero), and we recover the free
Laplacian in L2(R3).
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Approximation with regular operators

Let V smooth and compactly supported, and assume that −∆ + V has a
zero energy resonance, namely a funtion ψ ∈ L1 \ L2 such that

(−∆ + V )ψ = 0.

Existence of a zero energy resonance is related to con�ning property of the
potential V . In particular, V must have a negative part.
De�ne, for ε > 0 and a function λ : R→ R, with λ(0) = 1,

Vε :=
λ(ε)

ε2
V
(x
ε

)
The potential is shrinking around the origin. N.B. the scaling is not that of
a delta function, but is weaker. We have, in a suitable resolvent sense

lim
ε→0

(−∆ + Vε) = −∆α
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Rigorous formulation of the equation

Consider the Cauchy problem{
i∂tu = −∆αu +N (u), t ∈ R, x ∈ R3,

u(0, ·) = f ∈ X

where X is a suitable Hilbert space, for example L2(R3).

Since −∆α is self-adjoint, we have a unitary evolution e−it∆αf .

Integral formulation of the equation:

u(t, x) = e it∆αf − i

∫ t

0

e i(t−s)∆αN (u)(s)ds

We search for solution u ∈ C(I ,X ) of the integral equation, for some
time interval I .
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Energy space

De�ne, for α > 0, the Banach space

H1

α := D((−∆α)1/2) ‖ψ‖H1
α

:= ‖(−∆α + 1)1/2ψ‖L2(R3)

When α = +∞, we recover the Sobolev space H1(R3).

We have an explicit characterisation ([Georgiev, Michelangeli, S.] for a
discussion of the general fractional case)

H1

α =

{
ψ ∈ L2(R3) : ψ = Fλ + c

e−
√
λ|x |

4π|x |
: Fλ ∈ H1(R3), c ∈ C

}
∥∥Fλ + c

e−
√
λ|x |

4π|x |
∥∥2
H1

α
∼ ‖F‖2H1 + (1 + α)|c|2

The ‖ · ‖H1
α
-norm is preserved by the unitary evolution e−it∆α .

We will use H1
α as the energy space also for the non-linear problem.
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Existence of solutions

Theorem (Michelangeli, Olgiati, S., 2018)

Let w = |x |−γ , with 0 < γ < 1

2
. Then the Cauchy problem{

i∂tu = −∆αu + (w ∗ |u|2)u, t ∈ R, x ∈ R3,

u(0, ·) = f ∈ H1
α

has a unique solution u ∈ C([0,T ∗),H1
α), de�ned on a maximal time

interval [0,T ∗).

We have the blow-up alternative:

T ∗ < +∞ ⇐⇒ lim
t↑T∗
‖u(t)‖H1

α
= +∞

As long as ‖u(t)‖H1
α
stay bounded, the solution can be extended in time.
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Global solutions

Defone the mass and the energy:

M(u) :=

∫
R3

|u|2dx

E(u) :=< −∆αu, u > +
1

2

∫
R3

(w ∗ |u|2)|u|2dx

Formally, if u is a solution of the Cauchy problem, thenM(u(t))
E(u(t)) are conserved.

To rigorous justify energy conservation, we need the additional
asusmption that w and u are spherically symmetric (only a
mathematical issue or there is a physical meaning?)

We want to use mass and energy conservation to �nd global in time
solution (condensation is preserved also for large times).

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 12 / 14



Assume that w > 0 (repulsive interaction). Then

‖u(t)‖2H1
α
≈M(u(t))+ < −∆αu, u >

≤M(u(t)) + E(u(t)) =M(f ) + E(f )

Hence ‖u(t)‖H1
α
remains bounded, and by the blow-up alternatives the

solution is global.

Also if ŵ > 0 (physical meaning of this condition?) the potential
energy is positive, whence global in time solution.

In general, for attractive w , the dynamic is more complicated: blow-up
solutions, bound states.

It would be interesting to investigate the nature of these solutions, and
how they depends on the presence of a point interaction.
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Thank you for your attention
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Geometric Hamiltonian formulation of QM Geometry and quantum control

Geometrization of Quantum Mechanics

Describing quantum systems in terms of geometric structures.

Why?

• Standard formulation of Quantum Mechanics presents a
mathematical structure that is linear and algebraic (operators
in Hilbert spaces)

• Classical Mechanics can be mathematically formulated in a
broad and elegant differential geometric framework (symplectic
manifolds, Hamiltonian fields, Poisson structures...).

Phylosophical goal: A unified quantum/classical geometric scenario!

Technical goal: Application of powerful geometric tools that are
well-known in Classical Mechanics to quantum problems.
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Geometrization of Quantum Mechanics

Some landmarks

• T. W. B. Kibble Geometrization of quantum mechanics,
Comm. Math. Phys. 65 (1979)

• A. Ashtekar and T. A. Schilling Geometry of quantum
mechanics, AIP Conf. Proc. 342 (1995)

• D.C. Brody and L.P. Hughston Geometric quantum
mechanics, J. Geom. Phys. 38 (2001)

• J. Clemente-Gallardo and G. Marmo Basics of quantum
mechanics, geometrization and some applications to quantum
information, Int. J. Geom. Methods Mod. Phys. 5(6) (2008)
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Geometric Hamiltonian formulation of QM Geometry and quantum control

Classical tools

Phase space
A classical system with n spatial degrees of freedom is described in
a 2n-dimensional symplectic manifold (M, ω).

Physical state
A point x = (q1, ..., qn, p1, ..., pn)

Dynamics
A curve in (a, b) 3 t 7→ x(t) ∈M satisfying Hamilton equations:

dx
dt

= XH(x(t))

H : M→ R is the Hamiltonian function.
XH is the Hamiltonian vector field, given by: ωx(XH , ·) = dHx(·)
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Geometric Hamiltonian formulation of QM Geometry and quantum control

Classical tools
Statistical description
The state is a C1-function ρ on M and dynamics is described by the
Liouville equation

∂ρ

∂t
+ {ρ,H}PB = 0

Poisson bracket: {f , g}PB := ω(Xf ,Xg ).

Physical quantities are real smooth function on M:
The Observable C ∗-algebra is:

A = C∞(M)

Classical expecation value of f : M→ R on ρ:

〈f 〉ρ =

∫
M

f (x)ρ(x)dµ(x)
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QM in a classical-like fashion

Standard formulation of QM in a Hilbert space H:

Quantum states: D(H) = {σ ∈ B1(H)|σ ≥ 0, tr(σ) = 1}
Quantum observables: Self-adjoint operators in H.

Pure states (extreme points of the convex set D) are in bijective
correspondence with projective rays in H:

P(H) =
H

∼
ψ ∼ φ ⇔ ∃α ∈ C \ {0} s.t. ψ = αφ

dimH = n < +∞
P(H) is a real (2n − 2)-dimensional manifold with the following
characterization of tangent space:
p ∈ P(H): ∀v ∈ TpP(H) ∃Av ∈ H(H) s.t. v = −i [Av , p].

H(H) is the space of hermitian operators on H.
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Geometric Hamiltonian formulation of QM Geometry and quantum control

P(H) as a Kähler manifold
Symplectic form: ωp(u, v) := −i k tr([Au,Av ]p) k > 0
Riemannian metric:

gp(u, v) := −k tr(([Au, p][Av , p] + [Av , p][Au, p])p) k > 0

Almost complex form: jp : TpP(H) 3 v 7→ i [v , p] ∈ TpP(H)
p 7→ jp is smooth and jpjp = −id for any p ∈ P(H):

ωp(u, v) = gp(u, jpv)

Quantum observables as phase space functions
O : H(H) 3 A 7→ fA : P(H)→ R

Equivalence Hamilton/Schrödinger dynamics:

dp
dt

= −i [H, p(t)] ⇔ dp
dt

= XfH (p(t))
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P(H) as a Kähler manifold
Symplectic form: ωp(u, v) := −i k tr([Au,Av ]p) k > 0
Riemannian metric:

gp(u, v) := −k tr(([Au, p][Av , p] + [Av , p][Au, p])p) k > 0

Almost complex form: jp : TpP(H) 3 v 7→ i [v , p] ∈ TpP(H)
p 7→ jp is smooth and jpjp = −id for any p ∈ P(H):

ωp(u, v) = gp(u, jpv)

Quantum states as Liouville densities
S : D(H) 3 σ 7→ ρσ : P(H)→ [0, 1]

Equivalence quantum/classical expectation values:

〈A〉ρ = tr(Aσ) =
∫
M

fA(p)ρσ(p)dµ(p)
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From operators to functions
Definition
A map f : P(H)→ C is called frame function if there is Wf ∈ C
s.t. ∑

p∈N

f (p) = Wf

for any N ⊂ P(H) s.t. dg (p1, p2) =
π
2 for p1, p2 ∈ P(H) with

p1 6= p2 and N is maximal w.r.t. this property.

F2(H) := {f : P(H)→ C| f ∈ L2(P(H), µ), f is a frame function}

Theorem (V. Moretti, D.P. 2014)
Phase space functions describing quantum observables are real
functions in F2(H) and obtained from operators by:

O : H(H) 3 A 7→ fA fA(p) = k tr(Ap) +
1− k
n

tr(A) k > 0
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From operators to functions
Definition
A map f : P(H)→ C is called frame function if there is Wf ∈ C
s.t. ∑

p∈N

f (p) = Wf

for any N ⊂ P(H) s.t. dg (p1, p2) =
π
2 for p1, p2 ∈ P(H) with

p1 6= p2 and N is maximal w.r.t. this property.

F2(H) := {f : P(H)→ C| f ∈ L2(P(H), µ), f is a frame function}

Theorem (Ashtekar et al. 1995)
A vector field X on P(H) is the Hamiltonian vector field of a
quantum observable (i.e. X (p) = −i [A, p] with A ∈ H(H)) if and
only if

LXg = 0

.
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C*-algebra of quantum observables in terms of functions

O : H(H) 3 A 7→ fA − linear extension→ O : B(H)→ F2(H)

F2(H) as C*-algebra of observables

-) Involution: A = O(f ), A∗ = O(f );
-) ? - product: f ? g = O

(
O−1(f )O−1(g)

)
:

f ? h =
i
2
{f , h}PB +

1
2
G (df , dh) + f · h k = 1

-) Norm: |||f ||| =‖ O−1(f ) ‖

|||f ||| = 1
k

∣∣∣∣∣
∣∣∣∣∣f − 1− k

n

∫
P(H)

f dµ

∣∣∣∣∣
∣∣∣∣∣
∞

k > 0

where dµ is the volume form induced by g .
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Quantum control

Controlled n-level quantum system

i~
d
dt
|ψ〉 =

[
H0 +

m∑
i=1

Hiui (t)

]
|ψ(t)〉 (∗)

with initial condition |ψ(0)〉 = |ψ0〉.

Pure state controllability
The n-level system is pure state controllable if for every pair
|ψ0〉, |ψ1〉 ∈ H there exixst controls u1, ..., um and T > 0 such that
the solution |ψ〉 of (∗) satisfies

|ψ(T )〉 = |ψ1〉

.
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Quantum control

Controlled n-level quantum system

i~
d
dt

U(t) =

[
H0 +

m∑
i=1

Hiui (t)

]
U(t) (∗∗)

with initial condition U(0) = I.

Complete controllability
The n-level system is complete controllable if for any unitary
operator Uf ∈ U(n) there exist controls u1, ..., un and T > 0 such
that the solution U of (∗∗) satisfies

U(T ) = Uf
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Differential geometry and quantum controllability

Geometric Hamiltonian formulation

ṗ(t) = X0(p(t)) +
m∑

i=1

Xi (p(t))ui (t)

Xi are the Hamiltonian fields on P(H) defined by the classical-like
Hamiltonians obtained with our prescription.

Accessibility algebra
The smallest Lie subalgebra C of the Lie algebra of smooth vector
fields on P(H) containing the fields X0, ...,Xm.

Accessibility distribution

C(p) := span{X (p) |X ∈ C}



Geometric Hamiltonian formulation of QM Geometry and quantum control

Theorem (D.P. 2016)
A quantum system is pure state controllable if and only if the
following condition is satisfied:

TpP(H) = span{X (p)|X ∈ C}

for some p ∈ P(H).

The proof is based on this proposition:

A ∈ L ⇐⇒ Xf−iA ∈ C

where L is the Lie algebra generated by −iH0, ...,−iH1.

Corollary
A quantum system is completely controllable if and only if

C = Kill(P(H))
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An example
Consider a controlled 4-level quantum system whose dynamical Lie
algebra L is given by the matrices of the form:

A =


−ia c z d
e ib f w
−z d ia e
f −w c −ib

 ,

where a, b, c , d , e, f ∈ R and z ,w ∈ C.

Let p = diag(1, 0, 0, 0) and calculate:

XA(p) =


0 −c −z −d
e 0 0 0
−z 0 0 0
f 0 0 0

 ,

dimC(p) = 6 = dimTpP(H). Pure state controllability!
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Thank you for your attention!
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INCEPT
INhomogenieties and fluctuations in quantum CohErent Phases by
ultrafast optical Tomography

Experiments: Prof. Daniele Fausti (P.I.),
Theory: Prof. Fabio Benatti
Ultrashort dynamics in complex materials (sub-picosecond time
scales)
Cross-fertilization between quantum optics (quantum state
tomography) and condensed matter physics (pump-probe
experiments)
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Pump-probe experiments

Pump pulse excites the material
Probe pulse (less intense) test the evolution after a delay time t
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Raman scattering

Raman scattering is a kind of inelastic scattering for light
One photon loses energy exciting one phonon in the material
(Stokes process)... or
One photon increases its energy destroying one phonon
(anti-Stokes process)

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)
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Probe-target interaction

Initial state (probe + target): |α〉〈α| ⊗ %t

Refraction at the boundary

Href =
∑

j,µ,µ′

(
η

(0)
µµ′ + 〈b + b†〉t η(1)

µµ′

)(
a†µj rµ′ j + aµj r †µ′ j

)
Raman scattering

HRam :=
∑
µ,µ′

χµ,µ′

[(∑
j

a†µjaµ′ j+ Ω
δ

)
b† +

(∑
j

aµja
†
µ′ j+ Ω

δ

)
b
]
,

aµj , rµj ,b are bosonic operators

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)
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Dynamics and observables

Evolution operator

U(τ) = Ubulk (τ) Uref

Uref = exp(−i Href ) , Ubulk (τ) = exp(−iτ HRaman) (~ = 1) ,

Average of an observable Xphot

〈Xphot (τ)〉t = Tr[U(τ) |α〉〈α| ⊗ %t U†(τ) Xphot ]

Coherent state of the probe

|α〉 = exp
(∑

j

αxja
†
xj − α

∗
xjaxj

)
|0〉 , axj |α〉 = αxj , ayj |α〉 = 0 ,

αxj = exp
(
− (jδ)2

2σ2

)
eiϕ

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)
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Pump-target interaction

Same Hamiltonian for the light-matter interaction but different
approximation
Mean field for photons aλj → αP

λj

Explicit dependence on the polarization angle (with respect to x)

αP
xj = αP

0j cos(θP), αP
yj = αP

0j sin(θP)

Phononic operator shifted 〈b〉t = Tr(%tb) = Tr(%bt )

b → bt =U†ref U†bulk (τ) U†free(t) b Ufree(t) Ubulk (τ) Uref

' e−iΩt

b − iτ
∑
j,λλ′

χλλ′ αP∗
λj α

P
λ′ j+ Ω

δ

 .

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)
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Assumptions on the interaction (good for Quartz)

Zeroth order refraction matrix

η(0) =

(
η

(0)
xx η

(0)
xy

η
(0)
xy η

(0)
xx

)

First order refraction matrix depending on the phonon involved
(same for χ)

A : η(1) =

(
η

(1)
xx 0
0 η

(1)
xx

)
, EL : η(1) =

(
η

(1)
xx 0
0 −η(1)

xx

)
,

ET : η(1) =

(
0 η

(1)
xy

η
(1)
xy 0

)

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)
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Geometry

Phonons selected by the angle between the polarization of the
pump and the x axis (θP)

A :〈b〉t = CAe−iΩAt−iπ/2

EL :〈b〉t = CE cos(2θP) e−iΩE t−iπ/2 ,

ET :〈b〉t = CE sin(2θP) e−iΩE t−iπ/2 ,

Remember:

b →U†ref U†bulk (τ) U†free(t) b Ufree(t) Ubulk (τ) Uref

' e−iΩt

b − iτ
∑
j,λλ′

χλλ′ αP∗
λj α

P
λ′ j+ Ω

δ

 .

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)
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Mode occupation numbers (y polarization)

〈Nyk (τ)〉t '〈b + b†〉t |αxk |2 F y
ref

− i 〈b† − b〉t |αxk |
(
|αxk+ Ω

δ
| − |αxk− Ω

δ
|
)

F y
Ram(τ)

A : F y
ref = 0, F y

Ram(τ) = 0,

EL : F y
ref = 0, F y

Ram(τ) = 0,

ET : F y
ref = 2η(1)

xy η
(0)
xy sin2(η

(0)
xx ), F y

Ram(τ) = 0.

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)
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Pump at 45◦: A and ET phonons excited
Orthogonal polarization (leading term): ET Refractive

Stefano Marcantoni Quantum model for Impulsive Stimulated Raman Scattering (ISRS)
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Mode occupation numbers (x polarization)

〈Nxk (τ)〉t ' cos2(η
(0)
xx )|αxk |2 + 〈b + b†〉t |αxk |2 F x

ref

− i 〈b† − b〉t |αxk |
(
|αxk+ Ω

δ
| − |αxk− Ω

δ
|
)

F x
Ram(τ)

A : F x
ref = −η(1)

xx sin(2η(0)
xx ), F x

Ram(τ) = χxxτ cos2(η
(0)
xx ),

EL : F x
ref = −η(1)

xx sin(2η(0)
xx ), F x

Ram(τ) = χxxτ cos2(η
(0)
xx ),

ET : F x
ref = −2η(1)

xy η
(0)
xy cos2(η

(0)
xx ), F x

Ram(τ) = 0.
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Pump at 0◦: A and EL phonons excited
Parallel polarization: Raman and Refractive effects are both
visible
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Results Experiment 1 (summary)

Phase mismatch between Raman and refractive modulation
Selection of different phonons according to the polarization of the
pump
Different behaviour of Raman and refractive modulation
depending on the phonon involved and on the polarization
selected by the analyzer
Good agreement between theory and experiment
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Quadrature: Homodyne detection + Time-resolved spectroscopy

We combine two different experimental techniques to probe the
nonequilibrium response of the material
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Average quadrature

Measured quantity: Current difference I

I =
∑

j

(
c†xjcxj − d†xjdxj

)
, cj =

axj + aLO
xj√

2
, dj =

axj − aLO
xj√

2
.

Quadrature:

Xs =
1√
2

∑
j

(
axj z∗j e−iΦj (s) + a†xj zj eiΦj (s)

)
∝ I

Theoretical prediction:

〈Xs(τ)〉 = At cos(ω0s + Φt )

where
At ' A (1 + η sin(Ωt)) , Φt ' 2χ sin(Ωt).
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Average quadrature

At ' A (1 + η sin(Ωt)) , Φt ' 2χ sin(Ωt).
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Variance of the quadrature: work in progress

For a coherent initial state: variance is time-independent up to
second order in the coupling
Higher order effects or (more likely) signature of a statistical
mixture
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Conclusions and Outlook

Results:
Fully quantum model for Impulsive Stimulated Raman Scattering
(ISRS)
Outcomes of two different experiments correctly reproduced

Future work:
Complete tomography of the state of light (variance of the
quadrature)
Role of quantum correlations
More interesting (complex) dynamics in the sample (e.g.
interaction between the vibrational and electronic degrees of
freedom)
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Thank you for your attention!

Social dinner: Pizzeria "Al Barattolo" at 20.00.
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