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Heuristic model

Formally, consider the equation

i∂tu = −∆x +
N∑
j=1

µj δ(x − yj) +N (u),

where {y1, . . . yN} are distinct points in Rd , which supports delta-like
interactions of strenght {µ1, . . . µN}, and N (u) is a non-linear interaction
potential.

Why we consider point interactions?

Why we consider non-linear potentials?

How to give a rigorous meaning to the equation?
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Point interactions, motivations

−∆x +
N∑
j=1

µj δ(x − yj)

provides an heuristic model for a quantum particle subject to a "contact
potential", created by point sources of strenght µy centered at yj .

Kronig and Penney (1931) consider the 1D case as a model for a
non-relativistic electron moving in a �xed crystal lattice.

Bethe, Peierls (1935) and Thomas (1935) consider the 3D case with
y = 0. Introducing the center of mass and relative coordinates, this
provides a model for a deuteron with idealized zero-range nuclear force
between the nucleons.

Appears in many contexts: nuclear physics, solid state physics etc.

Provide "solvable" approximation of more complicated and realistic
phenomena, governed by very short range interactions
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Non-linear potentials, motivations

Consider the 3D many-body Hamiltonian

HN :=
N∑
j=1

−∆xj +
∑

1≤j<k≤N
wN(xj − xk),

where wN is a pontential governing the interaction between the particles.
Assume Bose-Einstein condensation at time t = 0:

ψ
(N)
0

(x1, . . . , xN) ≈
∏N

j=1
u0(xj), N � 1.

Then we have condensation at any time t > 0:(
e itHNψ

(N)
0

)
(x1, . . . , xN) ≈

∏N
j=1

u(t, xj), N � 1,{
i∂tu = −∆u +N (u)

u(0, x) = u0(x),
N (u) =

{
(w ∗ |u|2)u wN = N−1w

|u|2u wN = N2w(Nx)
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Non-linear potential with point interactions

HN,ε :=
N∑
j=1

(
−∆xj + Vε(xj)

)
+

∑
1≤j<k≤N

wN(xj − xk),

where Vε are smooth potentials, shrinking around the origin in such a way
to create a delta-like pro�le as ε→ 0. Assume Bose-Einstein condensation
at time t = 0.

Is condensation preserved, at least for short times?

Can we rigorous prove that the evolution of the condensate is

governed by the equation

i∂tu = −∆u + µδ(x) +N (u)

in the limit N → +∞ and ε→ 0?

Work in progress with A. Michelangeli and A. Olgiati. As a �rst step, we
need to show existence of solutions for the limit equation.

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 5 / 14



Rigorous construction of point interactions

Assume, for simplicity, a single center at the origin.

In dimension one, consider the quadratic form

Q(f , g) :=

∫
R
∂x f · ∂xg dx + µf (0)g(0), f , g ∈ H1(R).

From Q, we realise −∆x + µδ(x) as a self-adjoint operator on L2(R).

In higher dimension, we need a di�erent approach. Suppose d = 3.
The symmetric operator −∆|C∞0 (R3\{0}) has a one-parameter family of
self-adjoint extension {−∆α}α∈(−∞,+∞]. For λ > 0,

D(−∆α) =

{
ψ ∈ L2(R3) : ψ = Fλ +

Fλ(0)

α +
√
λ

4π

e−
√
λ|x |

4π|x |
: Fλ ∈ H2(R3)

}

(−∆α + λ)ψ = (−∆ + λ)Fλ
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Asymptotics of the wave function

The parameter α is related to the scattering lenght of the system at
the centre of interaction. Indeed, a generic element ψ ∈ D(−∆α)
satis�es the so called Bethe-Peierls contact condition

ψ(x) ∼
x→0

1

|x |
− 1

s
, s = −(4πα)−1,

which is typical for the low-energy behaviour of an eigenstate of the
Schrödinger equation for a quantum particle subject to a very short
(virtually zero) range potentials, centered at the origin and with
s-wave scattering lenght s.

When α = +∞, then no actual interaction is present at the origin
(the s-wave scattering lenght is zero), and we recover the free
Laplacian in L2(R3).
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Approximation with regular operators

Let V smooth and compactly supported, and assume that −∆ + V has a
zero energy resonance, namely a funtion ψ ∈ L1 \ L2 such that

(−∆ + V )ψ = 0.

Existence of a zero energy resonance is related to con�ning property of the
potential V . In particular, V must have a negative part.
De�ne, for ε > 0 and a function λ : R→ R, with λ(0) = 1,

Vε :=
λ(ε)

ε2
V
(x
ε

)
The potential is shrinking around the origin. N.B. the scaling is not that of
a delta function, but is weaker. We have, in a suitable resolvent sense

lim
ε→0

(−∆ + Vε) = −∆α
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Rigorous formulation of the equation

Consider the Cauchy problem{
i∂tu = −∆αu +N (u), t ∈ R, x ∈ R3,

u(0, ·) = f ∈ X

where X is a suitable Hilbert space, for example L2(R3).

Since −∆α is self-adjoint, we have a unitary evolution e−it∆αf .

Integral formulation of the equation:

u(t, x) = e it∆αf − i

∫ t

0

e i(t−s)∆αN (u)(s)ds

We search for solution u ∈ C(I ,X ) of the integral equation, for some
time interval I .
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Energy space

De�ne, for α > 0, the Banach space

H1

α := D((−∆α)1/2) ‖ψ‖H1
α

:= ‖(−∆α + 1)1/2ψ‖L2(R3)

When α = +∞, we recover the Sobolev space H1(R3).

We have an explicit characterisation ([Georgiev, Michelangeli, S.] for a
discussion of the general fractional case)

H1

α =

{
ψ ∈ L2(R3) : ψ = Fλ + c

e−
√
λ|x |

4π|x |
: Fλ ∈ H1(R3), c ∈ C

}
∥∥Fλ + c

e−
√
λ|x |

4π|x |
∥∥2
H1

α
∼ ‖F‖2H1 + (1 + α)|c|2

The ‖ · ‖H1
α
-norm is preserved by the unitary evolution e−it∆α .

We will use H1
α as the energy space also for the non-linear problem.

R. Scandone (SISSA) NLS with poin interactions 18 maggio 2018 10 / 14



Existence of solutions

Theorem (Michelangeli, Olgiati, S., 2018)

Let w = |x |−γ , with 0 < γ < 1

2
. Then the Cauchy problem{

i∂tu = −∆αu + (w ∗ |u|2)u, t ∈ R, x ∈ R3,

u(0, ·) = f ∈ H1
α

has a unique solution u ∈ C([0,T ∗),H1
α), de�ned on a maximal time

interval [0,T ∗).

We have the blow-up alternative:

T ∗ < +∞ ⇐⇒ lim
t↑T∗
‖u(t)‖H1

α
= +∞

As long as ‖u(t)‖H1
α
stay bounded, the solution can be extended in time.
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Global solutions

Defone the mass and the energy:

M(u) :=

∫
R3

|u|2dx

E(u) :=< −∆αu, u > +
1

2

∫
R3

(w ∗ |u|2)|u|2dx

Formally, if u is a solution of the Cauchy problem, thenM(u(t))
E(u(t)) are conserved.

To rigorous justify energy conservation, we need the additional
asusmption that w and u are spherically symmetric (only a
mathematical issue or there is a physical meaning?)

We want to use mass and energy conservation to �nd global in time
solution (condensation is preserved also for large times).
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Assume that w > 0 (repulsive interaction). Then

‖u(t)‖2H1
α
≈M(u(t))+ < −∆αu, u >

≤M(u(t)) + E(u(t)) =M(f ) + E(f )

Hence ‖u(t)‖H1
α
remains bounded, and by the blow-up alternatives the

solution is global.

Also if ŵ > 0 (physical meaning of this condition?) the potential
energy is positive, whence global in time solution.

In general, for attractive w , the dynamic is more complicated: blow-up
solutions, bound states.

It would be interesting to investigate the nature of these solutions, and
how they depends on the presence of a point interaction.
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Thank you for your attention
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