Non-linear Schrödinger equation with point interactions

Raffaele Scandone (SISSA Trieste)

Trieste Junior Quantum Days, 18 May 2018

Based on joint works with Vladimir Georgiev, Alessandro Michelangeli and Alessandro Olgiati.

Formally, consider the equation

$$i\partial_t u = -\Delta_x + \sum_{j=1}^N \mu_j \,\delta(x-y_j) + \mathcal{N}(u),$$

where $\{y_1, \ldots, y_N\}$ are distinct points in \mathbb{R}^d , which supports delta-like interactions of strenght $\{\mu_1, \ldots, \mu_N\}$, and $\mathcal{N}(u)$ is a non-linear interaction potential.

Formally, consider the equation

$$i\partial_t u = -\Delta_x + \sum_{j=1}^N \mu_j \,\delta(x-y_j) + \mathcal{N}(u),$$

where $\{y_1, \ldots, y_N\}$ are distinct points in \mathbb{R}^d , which supports delta-like interactions of strenght $\{\mu_1, \ldots, \mu_N\}$, and $\mathcal{N}(u)$ is a non-linear interaction potential.

Why we consider point interactions?

Why we consider non-linear potentials?

How to give a rigorous meaning to the equation?

Point interactions, motivations

$$-\Delta_{\mathsf{x}} + \sum_{j=1}^{N} \, \mu_j \, \delta(\mathsf{x} - \mathsf{y}_j)$$

provides an heuristic model for a quantum particle subject to a "contact potential", created by point sources of strenght μ_{γ} centered at y_j .

- Kronig and Penney (1931) consider the 1D case as a model for a non-relativistic electron moving in a fixed crystal lattice.
- Bethe, Peierls (1935) and Thomas (1935) consider the 3D case with y = 0. Introducing the center of mass and relative coordinates, this provides a model for a deuteron with idealized zero-range nuclear force between the nucleons.
- Appears in many contexts: nuclear physics, solid state physics etc.
- Provide "solvable" approximation of more complicated and realistic phenomena, governed by very short range interactions

Non-linear potentials, motivations

Consider the 3D many-body Hamiltonian

$$H_N := \sum_{j=1}^N -\Delta_{x_j} + \sum_{1 \leq j < k \leq N} w_N(x_j - x_k),$$

where w_N is a pontential governing the interaction between the particles. Assume Bose-Einstein condensation at time t = 0:

$$\psi_0^{(N)}(x_1,\ldots,x_N)\approx\prod_{j=1}^Nu_0(x_j),\quad N\gg 1.$$

Then we have condensation at any time t > 0:

$$\begin{pmatrix} e^{itH_N}\psi_0^{(N)} \end{pmatrix} (x_1, \dots, x_N) \approx \prod_{j=1}^N u(t, x_j), \quad N \gg 1,$$

$$\begin{cases} i\partial_t u = -\Delta u + \mathcal{N}(u) \\ u(0, x) = u_0(x), \end{cases} \qquad \qquad \mathcal{N}(u) = \begin{cases} (w * |u|^2)u & w_N = N^{-1}w \\ |u|^2u & w_N = N^2w(Nx) \end{cases}$$

$$H_{N,\varepsilon} := \sum_{j=1}^{N} \left(-\Delta_{x_j} + V_{\varepsilon}(x_j) \right) + \sum_{1 \leq j < k \leq N} w_N(x_j - x_k),$$

where V_{ε} are smooth potentials, shrinking around the origin in such a way to create a delta-like profile as $\varepsilon \to 0$. Assume Bose-Einstein condensation at time t = 0.

- Is condensation preserved, at least for short times?
- Can we rigorous prove that the evolution of the condensate is governed by the equation

$$i\partial_t u = -\Delta u + \mu \delta(x) + \mathcal{N}(u)$$

in the limit $N \to +\infty$ and $\varepsilon \to 0$?

Work in progress with A. Michelangeli and A. Olgiati. As a first step, we need to show existence of solutions for the limit equation.

Rigorous construction of point interactions

Assume, for simplicity, a single center at the origin.

• In dimension one, consider the quadratic form

$$Q(f,g) := \int_{\mathbb{R}} \overline{\partial_x f} \cdot \partial_x g \, dx + \mu \overline{f(0)} g(0), \quad f,g \in H^1(\mathbb{R}).$$

From Q, we realise $-\Delta_x + \mu \delta(x)$ as a *self-adjoint operator* on $L^2(\mathbb{R})$.

• In higher dimension, we need a different approach. Suppose d = 3. The symmetric operator $-\Delta|_{\mathcal{C}^{\infty}_{0}(\mathbb{R}^{3}\setminus\{0\})}$ has a one-parameter family of self-adjoint extension $\{-\Delta_{\alpha}\}_{\alpha\in(-\infty,+\infty]}$. For $\lambda > 0$,

$$\mathcal{D}(-\Delta_{lpha}) = \left\{ \psi \in L^{2}(\mathbb{R}^{3}) : \psi = F_{\lambda} + rac{F_{\lambda}(0)}{lpha + rac{\sqrt{\lambda}}{4\pi}} rac{e^{-\sqrt{\lambda}|x|}}{4\pi|x|} : F_{\lambda} \in H^{2}(\mathbb{R}^{3})
ight\}$$
 $(-\Delta_{lpha} + \lambda)\psi = (-\Delta + \lambda)F_{\lambda}$

• The parameter α is related to the *scattering lenght* of the system at the centre of interaction. Indeed, a generic element $\psi \in \mathcal{D}(-\Delta_{\alpha})$ satisfies the so called *Bethe-Peierls contact condition*

$$\psi(x) \mathop{\sim}\limits_{x \to 0} \frac{1}{|x|} - \frac{1}{s}, \quad s = -(4\pi\alpha)^{-1},$$

which is typical for the low-energy behaviour of an eigenstate of the Schrödinger equation for a quantum particle subject to a very short (virtually zero) range potentials, centered at the origin and with s-wave scattering lenght s.

• When $\alpha = +\infty$, then no actual interaction is present at the origin (the s-wave scattering lenght is zero), and we recover the free Laplacian in $L^2(\mathbb{R}^3)$.

Approximation with regular operators

Let V smooth and compactly supported, and assume that $-\Delta + V$ has a zero energy resonance, namely a function $\psi \in L^1 \setminus L^2$ such that

$$(-\Delta+V)\psi=0.$$

Existence of a zero energy resonance is related to *confining* property of the potential V. In particular, V must have a negative part. Define, for $\varepsilon > 0$ and a function $\lambda : \mathbb{R} \to \mathbb{R}$, with $\lambda(0) = 1$,

$$V_{\varepsilon} := rac{\lambda(\varepsilon)}{\varepsilon^2} Vig(rac{x}{\varepsilon}ig)$$

The potential is shrinking around the origin. N.B. the scaling is **not** that of a delta function, but is *weaker*. We have, in a suitable resolvent sense

$$\lim_{\varepsilon\to 0}(-\Delta+V_\varepsilon)=-\Delta_\alpha$$

Consider the Cauchy problem

$$\left\{ egin{aligned} i\partial_t u &= -\Delta_lpha u + \mathcal{N}(u), \quad t\in\mathbb{R}, x\in\mathbb{R}^3, \ u(0,\cdot) &= f\in X \end{aligned}
ight.$$

where X is a suitable Hilbert space, for example $L^2(\mathbb{R}^3)$.

• Since $-\Delta_{\alpha}$ is self-adjoint, we have a unitary evolution $e^{-it\Delta_{\alpha}}f$.

• Integral formulation of the equation:

$$u(t,x) = e^{it\Delta_{\alpha}}f - i\int_0^t e^{i(t-s)\Delta_{\alpha}}\mathcal{N}(u)(s)ds$$

 We search for solution u ∈ C(I, X) of the integral equation, for some time interval I.

Energy space

Define, for $\alpha > 0$, the Banach space

$$H^1_{lpha} := \mathcal{D}((-\Delta_{lpha})^{1/2}) \quad \|\psi\|_{H^1_{lpha}} := \|(-\Delta_{lpha} + 1)^{1/2}\psi\|_{L^2(\mathbb{R}^3)}$$

• When $\alpha = +\infty$, we recover the Sobolev space $H^1(\mathbb{R}^3)$.

 We have an explicit characterisation ([Georgiev, Michelangeli, S.] for a discussion of the general fractional case)

$$egin{aligned} \mathcal{H}^1_lpha &= \left\{\psi\in \mathcal{L}^2(\mathbb{R}^3)\,:\,\psi=\mathcal{F}_\lambda+crac{e^{-\sqrt{\lambda}|x|}}{4\pi|x|}:\,\mathcal{F}_\lambda\in \mathcal{H}^1(\mathbb{R}^3),c\in\mathbb{C}
ight\}\ &\left\|\mathcal{F}_\lambda+crac{e^{-\sqrt{\lambda}|x|}}{4\pi|x|}
ight\|^2_{\mathcal{H}^1_lpha}\sim \|\mathcal{F}\|^2_{\mathcal{H}^1}+(1+lpha)|c|^2 \end{aligned}$$

The || · ||_{H¹_α}-norm is preserved by the unitary evolution e^{-itΔ_α}.
We will use H¹_α as the energy space also for the non-linear problem.

Theorem (Michelangeli, Olgiati, S., 2018)

Let $w = |x|^{-\gamma}$, with $0 < \gamma < \frac{1}{2}$. Then the Cauchy problem

$$\begin{cases} i\partial_t u = -\Delta_{\alpha} u + (w * |u|^2)u, & t \in \mathbb{R}, x \in \mathbb{R}^3, \\ u(0, \cdot) = f \in H^1_{\alpha} \end{cases}$$

has a unique solution $u \in C([0, T^*), H^1_{\alpha})$, defined on a maximal time interval $[0, T^*)$.

We have the *blow-up* alternative:

$$T^* < +\infty \iff \lim_{t\uparrow T^*} \|u(t)\|_{H^1_{lpha}} = +\infty$$

As long as $||u(t)||_{H^1_{\alpha}}$ stay bounded, the solution can be extended in time.

Defone the *mass* and the *energy*:

$$\mathcal{M}(u):=\int_{\mathbb{R}^3}|u|^2dx$$
 $\mathcal{E}(u):=<-\Delta_lpha u,u>+rac{1}{2}\int_{\mathbb{R}^3}(w*|u|^2)|u|^2dx$

- Formally, if u is a solution of the Cauchy problem, then $\mathcal{M}(u(t))$ $\mathcal{E}(u(t))$ are conserved.
- To rigorous justify energy conservation, we need the additional asusmption that w and u are *spherically symmetric* (only a mathematical issue or there is a physical meaning?)
- We want to use mass and energy conservation to find global in time solution (condensation is preserved also for large times).

Assume that $w \ge 0$ (repulsive interaction). Then

$$egin{aligned} \|u(t)\|^2_{\mathcal{H}^1_lpha} &pprox \mathcal{M}(u(t)) + < -\Delta_lpha u, u > \ &\leq \mathcal{M}(u(t)) + \mathcal{E}(u(t)) = \mathcal{M}(f) + \mathcal{E}(f) \end{aligned}$$

Hence $||u(t)||_{H^1_{\alpha}}$ remains bounded, and by the blow-up alternatives the solution is global.

- Also if $\widehat{w} \ge 0$ (physical meaning of this condition?) the potential energy is positive, whence global in time solution.
- In general, for attractive w, the dynamic is more complicated: blow-up solutions, bound states.
- It would be interesting to investigate the nature of these solutions, and how they depends on the presence of a point interaction.

Thank you for your attention

R. Scandone (SISSA)

NLS with poin interactions

18 maggio 2018

э