

TEQ Review Meeting preparation and SC Meeting Brussels – list of participants

Name and Surname	Institution	Signature
Angelo Bassi	UniTs	Amelo B-
Irene Spagnul	UniTs	Diale Spane
Catalina Curceanu	INFN	an Den
Peter Barker	UCL	PZBarke
Mauro Paternostro	QUB	the Fre
Michael Drewsen	AU	Now of
Liberato Manna	TUD	flo Da
Hendrik Ulbricht	UoS	Al all
Caslav Brukner	OEAW	Onli Burk
Stefan Olsonrobbie	M2	Ad Illic

Brussels, February 25th 2019

www.tequantum.eu

TEQ Review Meeting agenda

February 26, 2019

EU Executive Research Agency, Brussels

Place Charles Rogier 16, 1210 Brussels (room COV2 17-SDR1)

9:00 – 9:15	R. Borissov	Introduction, tour du table								
9:15 – 9:45	A. Bassi	Overview by the coordinator								
9:45 – 10:30	L. Manna – M. Drewsen	WP1: Trapping								
	Coffee (10:30 – 11:	00)								
11:00 - 11:45	P. Barker	WP2: Cooling								
11:45 – 12:30	H. Ulbricht	WP3: Testing								
	Lunch (12:30 – 13:30)									
13:30 – 14:15	M. Paternostro	WP4: Enabling								
14:15 – 14:30	A. Bassi	WP5: Management								
14:30 – 14:45	C. Curceanu	WP6: Dissemination								
14:45 – 15:15	I. Spagnul	Financial data								
15:15 – 15:45		Innovation potential discussion								
15:45 – 16:15	Gen	eral discussion								
16:15 – 16:45	Assessment prep	paration by monitors and PO								
16.45 – 17:00	R. Borissov	Closing								

Testing the large-scale limit of quantum mechanics

TEQ : Testing the large-scale limit of Quantum Mechanics

Overview

Angelo Bassi, UniTs - PI

Acknowledgements It all started back in 2015...

- The local PIs: P. Barker, C. Brukner, C. Curceanu, M. Drewsen, N. Hempler, L. Manna, M. Paternostro, H. Ulbricht
- TEQ members
- Administrative Officer: Irene Spagnul
 - PO: Roumen Borissov
 - **Doviouvora** D Eilin D Ouidant W/ Struck

UniTs - University of Trieste

Luca Ferialdi

PI

Website

Angelo Bassi

Lorenzo Asprea

Gabriele De Chiara

Marta Maria Marchese Publications & Dissemination Manager

Matteo Carlesso

Website Manager

Caitlin Jones

Social Media Manager

Irene Spagnul Administrative Officer

Alessandro Ferraro

Michael Drewsen Local PI

INFN - Istituto Italiano Fisica Nucleare

Catalina Curceanu

Kristian Piscicchia

Local PI & Press Officer

Cyrille Solaro

The Network

Alberto Clozza

Massimiliano Bazzi

Aurelién Dantan

Vincent Jarlaud

Arjan Houtepen

Jence Mulder

Website

Website

TEO

Joseph Thom

Nils Hempler

Local PI

Website

9 C

James Bain

Local PI Website

TUD - Delft University of Technology

Luca De Trizio

Liberato Manna

UoS - University of Southampton

Giulio Gasbarri

Ashley Setter

Andrea Vinante

Ilya Kull

Anishur Rahman

Jonathan Gosling

Marco Toros

OEAW - Austrian Academy of Sciences

UCL - University College London

Christopher Timberlake

Caslav Brukner

Esteban Castro Ruiz

Peter Barker

Antonio Pontin

Thomas Penny

Local PI

Website

Local PI

Website

Long-term vision and targeted breakthrough

The long-term vision of TEQ is the identification of the **fundamental limitations** to the applicability of **quantum mechanics** towards the establishment of a novel paradigm for quantum-enhanced technology that makes use of large-scale devices

Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. Albert Einstein I think I can safely say that no one understands quantum mechanics **Richard Feynman**

I'm not as sure as I once was about the future of quantum mechanics. Steven Weinberg I am inclined to put my money on the idea that if you push quantum mechanics hard enough it will break down and something else will take over – something we can't envisage at the moment. Anthony J. Leggett

The trouble with Quantum Mechanics

Microscopic systems can be in a quantum superposition; macroscopic systems no... at least so far.

Why is it so? How is quantumness lost when moving from the microto the macro-world?

The core of TEQ

Is the lack of observation of quantum effects at the macroscopic level a manifestation of a breakdown of quantum linearity, or simply the consequence of the fact that no one so far was able to create a macroscopic quantum superposition?

We are presented with a compelling case for the **exploration of quantum effects at the large scale** and open up a new route for fundamental and technologically relevant investigations.

The standard route: large-mass matter-wave interferometry

Quantum Mechanics ok!

Quantum Mechanics wrong!

A novel route: noninterferometric experiments A localization of the

A localization of the wave function changes the position of the center of mass

Collapse-induced Brownian motion

Also theoretical reasons for that

A comparison: interferometric bounds on the CSL model

The overarching goal of the project...

...is to test CSL in a parameter range which is two orders of magnitude beyond any other test performed so far

scientific P Structu ູທ

TEO

M. Drewsen (AU)

H. Ulbricht (UoS)

M. Paternostro (QUB)

P. Barker (UCL)

WP Breakdown

Work package number	1	Start	Date or S		Mth 1				
Work package title	Trapping								
Participant number	1	2	3	4	5	6	7	8	9
Short name of participant	UniTs	AU	INFN	OEAW	QUB	TUD	UCL	UoS	MSL
PM per participant:	8	30	19	8	16	38	5	5	0

Work package number	2	2 Start Date or Starting Event M							Mth 1		
Work package title	Cooling	ling									
Participant number		2	3	4	5	6	7	8	9		
Short name of participant	UniTs	AU	INFN	OEAW	QUB	TUD	UCL	UoS	MSL		
PMs per participant:	8	15	20	12	16	9	40	10	22		

Work package number	3	Start	Date or S	Marting Ev	ent		Mth 1			
Work package title	Testing									
Participant number	1	2	3	4	5	6	7	8	9	
Short name of participant	UniTs	AU	INFN	OEAW	QUB	TUD	UCL	UoS	MSL	
PMsper participant:	11	6	10	16	16	3	5.6	36	22	

Work package number	4	4 Start Date or Starting Event						Mth 1		
Work package title	Enablin	g								
Participant number	i	i 2 3 4 5 6 7 8 9						9		
Short name of participant	UniTs	AU	INFN	OEAW	QUB	TUD	UCL	UoS	M2	
PM s per participant:	30	2	4	33	27.2	3	2	2	0	

WP Breakdown

Work package number	5	5 Start Date or Starting Event							Mth 1			
Work package title	Manage	Management										
Participant number		i 2 3 4 5 6 7 8 9										
Short name of participant	UniTs	AU	INFN	OEAW	QUB	TUD	UCL	UoS	MSL			
PMs per participant:	40	2	4	2	2	2	2	2	2			

Work package number	6	Start	Date or S	Starting Ev	ent		Mth 1		
Work package title	Dissem	ination	ı)						
Participant number		2	3	4	5	6	7	8	9
Short name of participant	UniTs	AU	INFN	OEAW	QUB	TUD	UCL	UoS	MSL
PMs per participant:	18	2	4	2	2	2	2	2	2

WP Breakdown - tasks

List of Deliverables

	Deliverables, Ethics, DMP, Other Reports												
WP No	Del Rel. No	Title	Lead Beneficiary	Nature	Disseminatio n Level	Est. Del. Date (annex I)	Receipt Date	Approval Date	Status				
WP5	D5.1	Website	UNITS	Websites, patents filling, etc.	Public	28 Feb 2018	15 Mar 2018	23 Aug 2018	Approved				
WP6	D6.1	Press releases	UNITS	Websites, patents filling, etc.	Public	31 Mar 2018	28 Mar 2018	23 Aug 2018	Approved				
WP5	D5.2	Data Management Plan	UNITS	ORDP: Open Research Data Pilot	Public	30 Jun 2018	28 Jun 2018		Submitted				
WP1	D1.2	1-Colloidal NCs	TU Delft	Report	Public	31 Dec 2018	19 Dec 2018		Submitted				
WP2	D2.1	Low noise electronics	INFN	Report	Public	31 Dec 2018	19 Dec 2018		Submitted				
WP3	D3.1	Low noise environment	SOUTHAMPTON	Report	Public	31 Dec 2018	19 Dec 2018		Submitted				
WP4	D4.1	Calibration of decoherence	QUB	Report	Public	31 Dec 2018	19 Dec 2018		Submitted				
WP6	D6.2	Popular press articles	UNITS	Websites, patents filling, etc.	Public	31 Dec 2018	19 Dec 2018		Submitted				
WP6	D6.5	Dissemination and Exploitation Plan	UNITS	Report	Confidential,	31 Dec 2018	19 Dec 2018		Submitted				
WP5	D5.3	Project Review meeting documents M12	UNITS	Report	Confidential,	28 Feb 2019	08 Feb 2019		Submitted				
WP4	D4.2	Bounds to CSL & SN models	QUB	Report	Public	30 Jun 2019			Pending				
WP6	D6.3	Videos	UNITS	Websites, patents filling, etc.	Public	31 Aug 2019			Pending				
WP1	D1.1	Rf trap for NCs	AU	Report	Public	31 Dec 2019			Pending				
WP1	D1.3	2-Colloidal NCs	TU Delft	Report	Public	31 Dec 2019			Pending				
WP4	D4.3	Size of superposition	QUB	Report	Public	31 Dec 2019			Pending				
WP6	D6.4	Workshop	UNITS	Websites, patents filling, etc.	Public	31 Dec 2019			Pending				
WP2	D2.2	Optimal cooling strategies	SOUTHAMPTON	Report	Public	31 Mar 2020			Pending				
WP3	D3.2	Systematic effects investigated	SOUTHAMPTON	Report	Public	30 Apr 2020			Pending				
WP5	D5.4	Project Review meeting documents M30	UNITS	Report	Confidential,	31 Aug 2020			Pending				
WP1	D1.4	Loading and control device	UCL	Report	Public	31 Dec 2020			Pending				
WP1	D1.5	Quantification of heating	QUB	Report	Public	31 Dec 2020			Pending				
WP4	D4.4	Bounds to the ecCSL model	UNITS	Report	Public	31 Dec 2020			Pending				
WP2	D2.3	Internal state cooling	UCL	Report	Public	28 Feb 2021			Pending				
WP3	D3.3	Ultimate experiment	SOUTHAMPTON	Report	Public	30 Apr 2021			Pending				
WP2	D2.4	Quantify decoherence	QUB	Report	Public	31 Aug 2021			Pending				
WP4	D4.5	Time-dilation/gravity collapse	OEAW	Report	Public	31 Aug 2021			Pending				
WP3	D3.4	General bound	QUB	Report	Public	31 Dec 2021			Pending				
WP5	D5.5	Project Review meeting documents M48	UNITS	Report	Confidential,	31 Dec 2021			Pending				

List of Milestones

Milestone number. Name [Related WP]	Date	Means of verification
M1. Preparation of NCs with minimum absorption	12	Combination of optical, electron microscopy,
& stable against aggregation [WP1]		and surface analysis methods [TR].
M2. NC-Trapping in low-noise environment [WP1]	24	Measurement of temperature of NCs [TR].
M3. Cooling of internal and centre-of-mass (CoM)	36	Changes in the line shape of the mechanical
degrees of freedom of a charged NC [WP2]		CoM and cooling transition [<i>preprint</i>].
M4. New tests for ecCSL and SN. [WP4]	36	Rigorous modelling of non-interferometric
		tests for ecCSL and SN [<i>preprint</i>].
M5. Experimental test of the quantum	42	Observation of broadening of mechanical
superposition principle [WP3]		spectral line [preprint].
M6. Time dilation decoherence & gravity-induced	48	Connection between time dilation decoherence
collapse. [WP4]		and gravity-induced collapse [preprint].

Critical risks

Description of WPs risk [risk level]	Proposed risk-mitigation measures						
WP1: No nebulisation of NCs in the	Use of laser desorption and/or large (10-7-10-6m) solvothermally						
trap via standard techniques [<i>medium</i>]	prepared particles stabilized with inorganic ligands.						
WP2&3: Strong environmental & Modify total charge on NCs and tune trap properties fo							
technical noise within target range of	trapping/cooling in noise-free region. Modify environment to						
mechanical frequency [/ow]	reduce low frequency noise sources.						
WP3: Noises in the ultimate experiment	Systematic effects will be separated in frequency and studied.						
cannot be supressed [<i>medium</i>]	Detection noise can be averaged out in longer measurement runs.						
WP4: Difficulties in the management of	Use of quantum unravelling techniques and application of methods						
the ecCSL [medium]	for open-system quantum Monte-Carlo.						
WP5: Violation of CA by a partner [Very	Rescheduling of deliverables, interruption of payments,						
low	removal/substitution of partner.						

	WP1	WP2	WP3	WP4	WP5	WP6	Total
1-UniTs	8	8	11	30	40	18	115
2 – AU	30	15	6	2	2	2	57
3–INFN	19	20	10	4	4	4	61
4–OEAW	8	12	16	33	2	2	73
5–QUB	16	16	16	27.2	2	2	79.2
6-TUD	38	9	3	3	2	2	57
7–UCL	5	40	5.6	2	2	2	56.6
8–UoS	5	10	36	2	2	2	57
9 – M SL	0	22	22	0	2	2	48
Total PMs	129	152	125.6	103.2	58	36	603.8

	Personnel	Other Direct	Indirect	Total	%	Requested
UniTs	417008	80000	124252,00	621260,00	100	621260,00
AU	275000	137500	103125,00	515625,00	100	515625,00
INFN	200000	107500	76875,00	384375,00	100	384375,00
OEAW	265000	32900	74475,00	372375,00	100	372375,00
QuB	309259	44500	88439,75	442198,75	100	442198,75
TUD	251572	63500	78768,00	393840,00	100	393840,00
UCL	222703	192494	103799,25	518996,25	100	518996,25
UoS	239997	342396	145598,25	727991,25	100	727991,25
M2	175000	140850	78962,50	394812,50	100	394812,50
TOTAL	2355539	1141640	874294,75	4371473,75		4371473,75

Testing the large-scale limit of quantum mechanics

Commission

WP1: TRAPPING

L. Manna – TUD M. Drewsen - AU

Summary of WP1

Persons-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2	
8	30	19	8	16	38	5	5		0

Tasks

T1.1 Construction of a low-noise rf trap.

T1.2 Synthesis of colloidal NCs with specific properties.

- T1.3 Methods for loading charged NCs into rf traps.
- T1.4 Theoretical identification of heating mechanisms and their effects.

Objectives

O1.1 Construction of a low noise trap for NCs suitable for a cryogenic environment.O1.2 Synthesis of NCs with tailored properties.O1.3 Loading of multiply charged NCs into the trap.O1.4 Quantification of heating sources and their effects on the trapped NCs.

Deliverables

D1.1 Rf trap for NCs [M 24].
D1.2 1-Colloidal NCs [M 12].
D1.3 2-Colloidal NCs [M 24].
D1.4 Loading and control device [M 36].
D1.5 Quantification of heating [M 36].

Testing the large-scale limit of quantum mechanics

Status of TEQ-trap and low-noise electronics

M. Drewsen - AU

The TEQ-trap design parameters

The nano-crystal

The TEQ-trap

 $\begin{array}{l} r_{NC} = 50 \text{ nm} \\ \rho_{NC} = 5 \text{ g/cm}^3 \\ m_{NC} = 2.6 \text{x} 10^{-18} \text{kg} \\ Q_{NC} = 10 \text{ e} \end{array}$

Requirements to trapping frequencies

$$ω_z = 2π \times (100-1000) \text{ Hz}$$
 $ω_z = \sqrt{\frac{2\kappa U_{End}}{z_0^2}} \times \frac{Q_{NC}}{m_{NC}}$
 $= V_{End} = 0.3-30 \text{ V}$
for $\kappa = 0.25$
 $ω_r > ω_z$
 $ω_r = 2ω_z$, $Ω_{RF} = 15ω_z$
 $= V_{RF} = 15-1500 \text{ V}$

The TEQ-trap

The blade design

Laser Micromachining Limited OpTIC Technium St. Asaph Business Park Denbighshire LL17 0JD, UK Tel: +44 (0)1745 535165 Fax: +44 (0)1745 535101

The TEQ-trap

Details of the blades

The TEQ-trap

Details of the blades

The blade design

Blades after gold coating

Blades after anealing

The TEQ-trap The blade after anealing

The blade after anealing

Thick gold layer needed for low ressistance and good heat conduction

The blade support made in Macor[®]

The blades mounted on support

Blade alignment tools

Blade alignment tools

Blade alignment tools

All trap parts send to the UCL partner for first test at room temperature

What noise level can be accept in the TEQ experiments?

What noise level can be accept in the TEQ experiments?

In terms of forces:

$$\sqrt{S_F(\omega)} \le 3 \cdot 10^{-22} N / \sqrt{Hz}$$
, $\omega_z \approx 2\pi \times (100 - 1000) Hz$

In terms of electrode voltages:

$$\sqrt{S_v^{DC}(\omega)} \le 25nV / \sqrt{Hz}$$
, $\omega_z \approx 2\pi \times (100 - 1000)Hz$

$$\sqrt{S_v^{AC}(\omega)} \le 70 nV / \sqrt{Hz}$$
, $\omega_z \approx 2\pi \times (100 - 1000) Hz$

The Aarhus linear Paul trap setup

The noise of the DACs voltages

The noise of the DACs voltages

The noise of the DAC + 10x amplifier voltages

Spectrum analyser noise power spectrum in the 5Hz to 10kHz range

The noise of the DAC + 10x amplifier voltages

Spectrum analyser noise power spectrum in 5Hz to 340kHz range

The DC voltage setup

Z

DC Supply

Motional sideband spectroscopy of a single ⁴⁰Ca⁺ ion

Laser cooling of a single ⁴⁰Ca⁺ ion to the motional ground state

Motional heating of a single ⁴⁰Ca⁺ ion due to noise

Motional heating of a single ⁴⁰Ca⁺ ion due to electrical noise

Status of the TEQ-trap setup

So far:

- First complete trap for room-temperature experiments finalized
- Low-noise digitally controllable DC voltage supplies have constructed
- Test with trapped ions have been performed in the 100 kHz-range

Next step:

- Final design for cryogenic-temperature experiments
- Improve low-noise DC voltage supplies further (probably using filters)
- Decide on RF/AC voltage supplies

Testing the large-scale limit of quantum mechanics

European Commission

WP1: TRAPPING

L. Manna – TUD M. Drewsen - AU

Summary of WP1

Persons-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2	
8	30	19	8	16	38	5	5		0

Tasks

T1.1 Construction of a low-noise rf trap.

T1.2 Synthesis of colloidal NCs with specific properties.

- T1.3 Methods for loading charged NCs into rf traps.
- T1.4 Theoretical identification of heating mechanisms and their effects.

Objectives

O1.1 Construction of a low noise trap for NCs suitable for a cryogenic environment.O1.2 Synthesis of NCs with tailored properties.O1.3 Loading of multiply charged NCs into the trap.O1.4 Quantification of heating sources and their effects on the trapped NCs.

Deliverables

D1.1 Rf trap for NCs [M 24].
D1.2 1-Colloidal NCs [M 12].
D1.3 2-Colloidal NCs [M 24].
D1.4 Loading and control device [M 36].
D1.5 Quantification of heating [M 36].

The synthesis and characterization of photon upconverting Yb:YLiF₄

Delft University of Technology Department of Chemical Engineering Opto-Electronic Materials Group

Material requirements

The optimal NC:

- Shape → regular, non-spherical
- Size \rightarrow 50 nm 1 μ m, monodisperse
- Absorption \rightarrow very low at 1064 and 1550 nm
- Solvent \rightarrow polar, suitable for electrospray
- Charge \rightarrow defined for surface
- Optical refrigeration \rightarrow photon upconversion

Proposed materials

- CdS
- CdSe
- CdTe
- CdSe@CdS
- ZnSe
- SiO₂
- Yb:YLiF₄

Size difficulties

Spherical

Size and shape fulfil requirements in theory

Synthesis

- Synthesis of trifluoroacetate (TFA) salts
- Cracking of the TFA salts
- Purifying and concentrating the particles

XRD Analysis

- XRD pattern fits perfectly
- Planes correspond with CaWO₄ structure

TEM Imaging samples (Yb : Y)

Material requirements

The optimal NC:

- Shape
- Size

- → regv ar, non-spherical → 50 1 - 1 μ m, monodisperse
- Absorption \rightarrow very low at 1064 and 1550 nm
- Solvent \rightarrow polar, suitable for electrospray
- Charge \rightarrow defined for surface
- Optical refrigeration \rightarrow photon upconversion

Absorption Spectroscopy

• Requirement: very low absorption at 1064 nm and 1550 nm

- Absorption 1100 1500 nm related to solvents and organic surfactants:
 - \rightarrow Removing solvent
 - \rightarrow Changing ligands for shot, non-absorbing ligands

Material requirements

The optimal NC:

- Shape
- Size
- Absorption \rightarrow very lov \sim 1064 and 1550 nm
- Solvent $\rightarrow pc X$ suitable for electrospray

 \rightarrow regv ir, non-spherical

 \rightarrow 50 \checkmark 1 – 1 µm, monodisperse

- Charge \rightarrow defined for surface
- Optical refrigeration \rightarrow photon upconversion

Ligand exchange

- Requirement: defined surface charge
- Removing absorbing ligands (oleate)
- Ligand stripping with Et₃OBF₄ or NOBF₄

Absorbance change

- Phase transfer: hexane \rightarrow methanol
- Very low absorbance at 1064 and 1550 nm
- Charge-stabilized in MeOH

Ligand exchange

• After a ligand exchange with Et₃OBF₄, the particles can be better dispersed than the sample prepared in hexane

Material requirements

The optimal NC:

- Shape \rightarrow reg \exists r, non-spherical• Size \rightarrow 50 $1 1\mu m$, monodisperse• Absorption \rightarrow very low1064 and 1550 nm• Solvent \rightarrow posuitable for electrospray
- Charge \rightarrow defined \sim surface
- Optical refrigeration \rightarrow photon upconversion

Optical refrigeration principle

- Phonon-assisted anti-Stokes photoluminescence
- High quantum yield required for cooling

DOI: 10.1117/12.2080343

Absorbance of Yb³⁺ ion

• After subtracting the absorbance features related to solvents and Rayleigh scattering, different absorption peaks of the Yb³⁺ ion can clearly be distinguished from the background

Emission and excitation spectroscopy

- Excitation at 1010nm, emission peaks at 960nm and 995nm
- Photon upconversion of 64meV (960nm) and 19 meV (995nm)

Material requirements

The optimal NC:

- Shape → reg ir, non-spherical
 Size → 50 1 1µm, monodisperse
 Absorption → very low 1064 and 1550 nm
 Solvent → po suitable for electrospray
 Charge → defined ~ surface
- Optical refrigeration \rightarrow photon u \sim nversion

Latest results on YLF NCs containing 20% Yb

Outlook

- Size, shape, solvent and absorption parameters meet the requirements
- Charging surface is possible
- More analysis needed for a defined charge
- Nanoparticles show upconversion, but phonon-emission is far larger, hence the particles are heating up instead of cooling down
- Growing a shell of undoped YLiF₄ on top of Yb:YLiF₄ might improve PLQY
- Alternative materials will be tested, for example rare earth doped halide perovskites

A possible alternative: Yb doped CsPbCl₃ Nanocrystals

References

https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b05104 https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b03966?src=recsys QY 150% https://pubs.acs.org/doi/10.1021/acs.nanolett.8b01066 QY 170% https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201704149 QY 146% https://pubs.acs.org/doi/full/10.1021/acs.jpclett.8b03406

Testing the large-scale limit of quantum mechanics

European Commission

WP2: COOLING

P. Barker – UCL

Summary of WP2

Persons-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2
8	15	20	12	16	9	40	10	22

Tasks

T2.1 Design, construct and test low noise electronics.

T2.2 Implement optical, resistive and cavity cooling.

- T2.3 Identify materials and perform internal cooling of NCs.
- T2.4 Study and measure non-equilibrium dynamics for all systems.

Objectives

O2.1 To develop low noise trap, detection and feedback electronics.

O2.2 To determine optimal detection and cooling strategies for trapped NCs.

O2.3 To cool internal states of trapped NCs.

O2.4 To understand and control sources of decoherence.

Deliverables

D2.1 Low noise electronics [M 12].

D2.2 Optimal cooling strategies [M 27]. D2.3 Internal state cooling [M 38]. D2.4 Quantify decoherence [M 44].

<u>Outline</u>

Low noise electronics (2.1) Paul trap electronics (INFN) (T2.1)— see also WP1 Homodyne detection (UCL)

Centre-of-mass cooling (2.2) Opto-electrical feedback cooling (UCL)

Internal state cooling (2.3)

Loading, trapping and characterisation of Yb:YLF nanoparticles (UCL, TUD)

Understanding and controlling sources of decoherence (2.4) First measurements of Paul trap stability and noise characterisation (UCL)

Low noise electronics for Paul trap (INFN)

Power Supply Requirements

Due to its ambitious finality, the Particle Trap Power Supply must respond to the following specifics:

- Max amplitude 50V
- Typical Bandwidth 10kHz
- Maximum output Noise 22nV/VHz

Current Power Supply Apparatus

- Raspberry π microcontroller
- AD5791 DAC
- Custom HV amplifier
- RF DC Mixer

Amplifier Schematic

Power Supply Requirements

Current design has been thoroughly reviewed to check if specifics were respected.

DC GAIN = 10 OK Bandwidth = 300kHz OK NOISE...

Among all specifics, noise is indeed the most critical.

Amplifier NOISE measurement

Block diagram of a noise amplifier

44 (4) 9

Gain x VBW must be in the order of $10^5 \div 10^6$

Amplifier NOISE measurement

C9 10n

LT1012

 $GAIN = 10^{3}$ BW = 10 kHz

Amplifier NOISE measurement

Gain 10⁶ BW 10Hz Special features like Utra Low Noise, OFFSET and DRIFT compensation...

Amplifier NOISE analysis

NOISE analysis include:

- Identify the main noise sources
- Calculate Noise GAIN for each source
- Output Noise Estimation for each source
- Quadratic Sum of all Noise contibution

Amplifier NOISE analysis

Power Supply Adjustements

Current design can be salvaged with a few expedients:

- Reduce resistor values, maintaining DC Gain
- Increase capacitor values, maintaining time constants
- Replace OPA277 with a low noise amplifier
- AND... Keep track of all relations to guarantee stability!

Power Supply Adjustements

Power Supply Adjustements

Possible solution is to replace:

- R₁=2K5 R₇=250R C₁=27pF C₂₅=2,2nF
- OPA277 replaced with OPA211 (same package, 1nV of noise) Result is...

20nV/VHz of noise! This is the first deliverable

NOISE Measurement Ongoing

ADDIVIDUATION

Drawbacks

Advantages always comes with disadvantages:

- Smaller resistors correspond to higher currents
- With a 5V input, driving current becomes 20mA!
- Feedback current is 20mA as well

Drawbacks

Advantages always comes with disadvantages:

- A 20mA current is too much for a driving stage
- The heat generated by a single resistor can be too high (i.e.: the heat genereted by R₁ is 1W!)

Solutions

R1 can be replaced with 4 resistors in parallel of 10k each. The heat generation is equally split.

0.1% tolerance, 10ppm thermal drift, 250mW resistors can be easily found.

Axial resistor recommended

Solutions

For the driving stage it is necessary to add a block that provides all the current required

Solutions

This block replaces R₇. Low noise stage (≈2nV). Can give up to 80mA of current. This buffer can also accept four independent inputs. The combination of four

uncorrelated identical sources can reduce noise of a factor 2 compared to the single source.

Electronics developed for a general homodyne applications.

- Simple pre-Amp configuration
- High dynamic range, necessary to explore all quadratures
- More than 50dB of extinction ratio for intensity noise

Dark noise dominated by Jonhson noise of the shut resistance.

For low powers (big R_{shunt}) dark noise can be significantly worst than in typical commercial photodiodes

For high powers (small R_{shunt}) the differences reduces.

There's a lot of room to improve and this is something that could be improved by TEQ

Phase quadrature of cavity transmitted beam

- Cavity half linewidth ≈ 9 kHz
- Output power ≈ 2 µW

In our typical configuration dark noise becomes relevant only at high frequency and only due to cavity cut-off

Optical Electrical - Feedback cooling

Increase trap stiffness and slow particle

Reduce stiffness so that particle does not gain lost kinetic energy

Optical-electric feedback cooling

Demonstration on simple trap

Trap loading with Electrospray

Homodyne detection of motion

Recorded Spectra

Cooled spectra

$$S_{x}(x) = \frac{\Gamma_{0}k_{B}T/(\pi m)}{([\Omega_{0}^{2} + \delta\Omega^{2}]^{2})^{2} + \Omega^{2}[\Gamma_{0} + \delta\Gamma]^{2}}$$
$$T_{cm} = T_{0}\frac{\Gamma_{0}}{\Gamma_{0} + \delta\Gamma}$$

- Γ_0 Environmental Damping
- $\delta\Gamma$ Additional Feedback Damping
- $\Omega_0~$ Natural Frequency
- $\delta\Omega$ Frequency Shift from Feedback

Cooled spectra

Temperatures down to mK suitable to begin experiments Requirements of 10⁻¹³ mbar to reduce effects of particle heating Better detection – via cavity required for lower temperatures (discussion WP3) Careful reduction of stray fields

TEQ PERIOD 1 REVIEW

26TH FEBRUARY 2019 STEFAN OLSSON ROBBIE - PROJECT MANAGER INNOVATION

WP2 - UCL

975-1070 nm RIN < -140 dB/Hz beyond 1 MHz Linewidth < 1 kHz

SA

(=)

S STOR

SQUARE

00

42

SQUARED

WP3 - UOS

Doubled system -> ~350 nm RIN < -100 dB/Hz

Linewidth Narrowing

Laser

- Intracavity EOM
- External AOM

Stable Reference

- SLS cavity
 - Ion pump
 - Vibration isolation
 - Temp control- Tolerable drift rate: Hz/s?

T allow

- Acoustic housing

Stable Light Transfer

- Fibre phase noise cancellation ?

Error Signal Generation

- M Squared developing proprietary locking technology

Internal cooling

New laser system from M2 allows us to tune from 975 -1075 nm

Spectra recorded of new Yb:YLF nanocrystals

TEC

Can compare with previous results – Appear to have low temperatures 200 K

Single beam homodyne detection

Trap frequencies at 5 mBar

- Power spectral density $S_{\chi}(\omega) = \frac{2k_{B}T}{M} \frac{\gamma}{(\omega^{2} - \omega_{0}^{2})^{2} + \gamma^{2}\omega^{2}}$
- Temperature and damping are related as $-T \propto \gamma^2$
- Assume

$$T = T_{cal} \frac{\gamma^2}{\gamma_{cal}^2}$$

Linewidth with power (5mbar)

Collisions -> Internal T leads to centre of mass temperature.

Assuming initial temperature of 1020 nm at 50 mW was T_{CM} =300 K .

Highest temperature was T_{CM} =(440±10) K.

Intensity vs Power at 5mbar

1060nm 1020nm 2500 Scattered intensity ~ particle Intensity (arbitrary units) 2000 volume 1020 nm light intensity 1500 reduces at higher power reducing in size. Camera become saturated after 130mW at 1060nm. 1000 -Also agrees with increase in linewidth observed above 90 mW. 500 50 100 150 Power (mW)

Linewidth with wavelength (5mbar)

A dramatic increase in the linewidth for 150 mW at 1015 nm.

Assuming temperature for 50 mW was T_{CM} =300 K then highest temperature T_{CM} =(420±10) K.

Scattered light as function of wavelength at 5 mbar

50mW

110mW 150mW Scattered intensity at 1020 - shows reduced in size. Wavelength (nm)

nm

Trap frequency vs wavelength at 7mbar

TEO

Future work for internal state cooling

- calibration of motional spectrum as does not require assumption of temperature
- place nanoparticle in Paul trap and measure temperature at lower
- model spectra from strongly pumped NC's
- explore cooling with lower doping Yb already supplied by Delft

Using a camera for low noise trap characterisation

Detection by photodiode has significant noise in PSD

Frequency changes measured for > 6 days

Frequency stability limited by 3 degree C room temperature fluctuation

- 200 nm displacement of electrodes in holders
- thermal fluctuations in drive electronics

Issues that need to be addressed/explored

- all dielectrics further away from nanoparticles
 - -> large fixed by new trap from AU
- lower noise electronics from INFN required

-> has to be implemented

- all conventional vacuum gauges off during measurement
 - -> this is straightforward
- control of temperature dependence of electronics

-> this needs evaluation

- need to keep charged nanoparticles off electrodes
 - -> more precise loading and differential pumping
- mass and size calibration required
- larger the charge the more sensitive to stray fields/fluctuations

Summary of WP2

Persons-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2
8	15	20	12	16	9	40	10	22

Tasks

T2.1 Design, construct and test low noise electronics.

T2.2 Implement optical, resistive and cavity cooling.

T2.3 Identify materials and perform internal cooling of NCs.

T2.4 Study and measure non-equilibrium dynamics for all systems.

Objectives

O2.1 To develop low noise trap, detection and feedback electronics.

O2.2 To determine optimal detection and cooling strategies for trapped NCs.

O2.3 To cool internal states of trapped NCs.

O2.4 To understand and control sources of decoherence.

Deliverables

D2.1 Low noise electronics [M 12]. Achieved

D2.2 Optimal cooling strategies [M 27]. D2.3 Internal state cooling [M 38]. D2.4 Quantify decoherence [M 44].

European Commission

WP3: TESTING

H. Ulbricht – UoS

Summary of WP3

Persons-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2
11	6	10	16	16	3	5.6	36	22

Tasks

T3.1 Set up dilution cryostat and laser for the ultimate experiment.

T3.2 Investigation of systematic effects.

T3.3 Perform the ultimate experiment.

T3.4 Adapt theory and predict experimental outcomes.

Objectives

O3.1 To develop low noise environment for the low noise trap with optical cooling in dilution fridge.

O3.2 To perform tests of CSL noise effects on motion of trapped NC.

O3.3 To adapt theory to experimental parameters to optimize the test of quantum superposition.

Deliverables

D3.1 Low noise environment [M 12].

D3.2 Systematic effects investigated [M 28].D3.3 Ultimate experiment [M 40].D3.4 General bound [M 48].

People involved

Experiments on WP3:

 UoS: Andrea Vinante, Muddassar Rashid, Christopher Timberlake Ashley Setter, Hendrik Ulbricht

- UCL: Antonio Pontin, Marko Toros, Peter Barker
- AU: Michael Drewsen
- INFN: Max Bazzi, Catalina Curceanu

Testing collapse models with levitated nanoparticles: the detection challenge

P. Barker,¹ A. Pontin,¹ M. Rashid,² M. Toros,¹ H. Ulbricht,² and A. Vinante² ¹Physics Department, University College London, London, WC1E 6BT, United Kingdom ²Department of Physics and Astronomy, University of Southampton, SO17 1BJ, United Kingdom (Dated: February 24, 2019)

We consider a nanoparticle levitated in a Paul trap in ultrahigh cryogenic vacuum, and look for the conditions which allow for a stringent noninterferometric test of spontaneous collapse models. In particular we compare different possible techniques to detect the particle motion. Key conditions which need to be achieved are extremely low residual pressure and the ability to detect the particle at ultralow power. We compare three different detection approaches based respectively on a optical cavity, optical tweezer and a electrical readout, and for each one we assess advantages, drawbacks and technical challenges.

I. INTRODUCTION

Spontaneous wave function collapse (or dynamical reduction) models (CM) [1–5] have been proposed to reconcile the linear and deterministic evolution of quantum mechanics with the nonlinearity and stochasticity of the measurement process. According to CM, random collapses in space (i.e. localizations) of the wave function of any system occur spontaneously, independently of measurement processes, leading to a progressive spatial localization. The collapse rate scales with the size of the

Outline: WP3 report

1 CSL exclusion plot

- i. Force noise measurement approach
- ii. Force measurements in levitated optomechanics
- (2) Comparison of CSL noise to thermal noises
 - i. Evaluation of required parameters for TEQ experiment
 - ii. Considerations on detection
 - iii. Summary of parameters
- (3) Implementation of low-noise environment at UoS
 - i. Low pressure
 - ii. Low temperature
 - iii. Detection at ultralow power
 - iv. Low vibrations

CSL parameter space: the region TEQ will explore

- Non-interferometric test
- How to convert CSL parameter into experimental ones?
- -> Measure force noise

Force (noise) in harmonic oscillator:

Thermal bath affect minimum force measured:

 $4k_B I_0 n$

M. Bahrami et al, PRL **112** 210404 (2014) S. Nimmrichter et al, PRL **113** 020045 (2014) L. Diosi, PRL **114**, 050403 (2015) D. Goldwater et al. Phys. Rev. **A 94**, 010104 (2015) A. Vinante et al, PRL **116**, 090402 (2016)

- Earlier CSL tests are based on force noise measurement
- New in TEQ is *levitation*, should give higher Q and lower frequency, few degrees of freedom

Force (noise) measurements in levitated opto-mechanics: to get the feel for it

Real-Time Kalman Filter: Cooling of an Optically Levitated Nanoparticle, Phys. Rev. **A 97**, 033822 (2018)

556.1 556.2

filtered 7 signs

555 Q

556.0

Setter, A., M. Toroš, J. F. Ralph, H. Ulbricht,

8,0.00

-0.75

-1.00

555.8

555.9

time (me)

556.0

556.1

556 2

Reduce all noises to be smaller than CSL noise:

CSL force noise on a nanosphere:

$$S_{ff,CSL} = \frac{32\pi^2 \hbar^2 \lambda r_C^2 \rho^2 R^2}{3m_0^2} \left[1 - \frac{2r_C^2}{R^2} + e^{-\frac{R^2}{r_C^2}} \left(1 + \frac{2r_C^2}{R^2} \right) \right]$$

Thermal noise from blackbody photon recoil [negligible]:

$$S_{ff,bb} = \frac{160}{\pi} \frac{R^3 k_B^6}{c^5 \hbar^4} \text{Im} \frac{\epsilon_{bb} - 1}{\epsilon_{bb} + 2} T^6$$

Thermal noise from gas collisions:

$$S_{ff-gas} = 4k_B m T_{gas} \Gamma_{gas}$$
$$\Gamma_{gas} = \sqrt{\frac{8}{\pi}} \left(1 + \frac{8}{\pi}\right) \frac{P_{gas}}{\rho R \sqrt{\frac{k_B T_{gas}}{m}}}$$

 r_c and λ – CSL parameter ϱ - mass density of sphere m_0 - mass of sphere m – mass of background gas T_{gas} – temperature of background gas P_{gas} – pressure of background gas

R – radius of sphere

Dependence on size for fixed gas T, P

HOWEVER: small size

lower vibrational noise & easier Paul trap operation

Challenge: internal heating for optical detection

Possible alternative: Electrical Detection (through Paul trap electrodes) + SQUID

Thermal noise: requirements on gas pressure

Detection at ultralow absorbed power

1) Low-finesse (~1000) OPTICAL CAVITY

Issues:

- Locking at low power
- Requires very accurate alignment
- Requires feedback to stabilise particle position

SIMILAR FOR OPTICAL TWEEZER APPROACH (limited by NEP of detector ...)

NOISE BUDGET @ P=10⁻¹³ mbar, 10⁻⁶ W cavity input power

GOOD EFFECTIVE BANDWIDTH \approx Hz (Photon recoil dominated)

Detection at ultralow absorbed power

2) Electrical readout + SQUID

PAUL TRAP ELECTRODES

Issues:

- Needs a huge superconducting transformer
- Paul trap bias drive could saturate SQUID Advantages:
- No alignment issues
- No power dissipated in particle
- Lower thermal noise achievable

10-5 total noise electrical noise thermal gas coll. noise 10⁻⁶ SQUID backaction noise S_X (m/Hz^{1/2}) 10-7 SQUID imprecision 10^{-8} 10⁻⁹ 10-1 -0.00010.0000 0.0001 0.0002 -0.0002f-f0(Hz)

VERY NARROW BANDWIDTH \approx mHz (low coupling, thermal noise dominated)

LOWER FORCE NOISE BUT NEEDS VERY HIGH FREQUENCY STABILITY!

Summary of requirements to test CSL:

Parameter	Target	Comments
Particle size	200 nm	To probe CSL @ r _c =10 ⁻⁷ m
Frequency	100 Hz – 1 kHz	Stable trap and low force noise
Particle material	SiO ₂ /Yb:YLiF	Low absorption, many charges, consider effects of non-spherical shapes
Temperature	< 1 K	Reduce thermal noise & gas pressure
Pressure	< 10 ⁻¹⁰ mbar	Reduce thermal noise. Desirable <10 ⁻¹² mbar
Detection power	< 10 ⁻¹⁴ W	Minimize backaction noise and heating
Optical access	yes	Both wedged windows and fibres for maximum flexibility
Vibrational attenuation	> 60 dB	Will ensure seismic/acoustic noise negligible

TEQ low-noise environment: now at UoS!!

- Low Temperature: Wet sorption He-3 refrigerator with base temperature 300 mK [for 100 hours, 6 litres of He-3]
- Low Pressure: UHV-compatible cryostat, [CF flanges, beakout @ 120 °C, turbo and cryo pump]
- Optical access [wedged windows + 3 fibres, FC-APC, PM, single mode]
- Low vibration mode [no mechanical pumps, no pulsed tube, only He-4 bubbling]
- Low frequency mechanical isolation integrated in cryostat frame (Newport, S-2000A-116, > 30 Hz -> 60 dB attenuation)
- Pre-installed wiring, 20 coaxial + 25 twisted pairs, with superconducting cryogenic section [to avoid resistive heating] for Paul trap voltages.
- Stable laser for detection installed at UoS [SolTis, Msquared].
- Vibration survey at UoS performed [low external vibrations]

The He-3 refrigerator: design details

Some photographs: cryo now in lab in UoS !!

Next: Testing the cryo and attaching the Paul trap

Next studies:

- Measure noise in the cryo -> D.3.2: Investigation of systematic effects. (M28)
- Different strategies for detection of particle position (together with WP1 and WP2)
- Different strategies for detection of heating (together with all other WP1,2,4)
- Implementation of Paul trap into cryo.
- Particle loading at low T, particle's charge control at low T

Summary of WP3

Persons-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2
11	6	10	16	16	3	5.6	36	22

Tasks

T3.1 Set up dilution cryostat and laser for the ultimate experiment.

T3.2 Investigation of systematic effects.

- T3.3 Perform the ultimate experiment.
- T3.4 Adapt theory and predict experimental outcomes.

Objectives

O3.1 To develop low noise environment for the low noise trap with optical cooling in dilution fridge.

O3.2 To perform tests of CSL noise effects on motion of trapped NC.

O3.3 To adapt theory to experimental parameters to optimize the test of quantum superposition.

Deliverables

D3.1 Low noise environment [M 12].

D3.2 Systematic effects investigated [M 28].D3.3 Ultimate experiment [M 40].D3.4 General bound [M 48].

European Commission

WP4: ENABLING

M. Paternostro - QUB

European Commission

What WP4 is about

Visionary perspectives on the study of the foundations of quantum mechanics

5. Ruling out

European Commission

Summary of WP4

Person-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2
30	2	4	33	27.2	3	2	2	0

Tasks

T4.1 To assess decoherence on the experimental set up at the core of **WP3**.

T4.2 To determine experiment-specific bounds to CSL and SN mechanisms.

T4.3 To develop schemes to quantify the macroscopicity of quantum superposition states.

T4.4 To design settings for the test of energy-conserving CSL and SN model.

T4.5 To compare time-dilation decoherence and gravity-induced collapse.

Objectives

O4.1 To set up a theoretical framework for the test of quantum mechanics at the mesoscopic level.O4.2 To design experimental tests able to refine the framework of collapse models.

O4.3 To investigate macro-realism at the mesoscopic level through the experiments at the core of TEQ.

Deliverables

- D4.1 Calibration of decoherence [M12]
- D4.2 Bounds to CSL & SN models [M18]
- D4.3 Size of the superposition [M24]
- D4.4 Bounds to the ecCSL model [M36]
- **D4.5** Time-dilation/gravity collapse [M44]

Commission

Summary of WP4

Person-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2
30	2	4	33	27.2	3	2	2	0

Tasks

T4.1 To assess decoherence on the experimental set up at the core of **WP3**.

T4.2 To determine experiment-specific bounds to CSL and SN mechanisms.

T4.3 To develop schemes to quantify the macroscopicity of quantum superposition states.

T4.4 To design settings for the test of energy-conserving CSL and SN model.

T4.5 To compare time-dilation decoherence and gravity-induced collapse.

Objectives

O4.1 To set up a theoretical framework for the test of quantum mechanics at the mesoscopic level.O4.2 To design experimental tests able to refine the framework of collapse models.

O4.3 To investigate macro-realism at the mesoscopic level through the experiments at the core of TEQ.

Deliverables

D4.1 Calibration of decoherence [M12]

- D4.2 Bounds to CSL & SN models [M18]
- D4.3 Size of the superposition [M24]
- D4.4 Bounds to the ecCSL model [M36]
- **D4.5** Time-dilation/gravity collapse [M44]

Testing the large-scale

quantum mechanics

limit of

Commission

People involved in WP4

Commission

Calibration of decoherence sources

Noise related to the trapping mechanisms

• Surface losses in the electrodes of the Paul trap

European Commission

Calibration of decoherence sources

Noise related to the surrounding environment

- Scattering with gas particles
- Scattering/emission/absorption of blackbody radiation
- Scattering of photons from the driving field
- Possible losses for any electrical detection circuit coupled to the system
- Ambiental vibrational noise

equilibration of the particle

Commission

Calibration of decoherence sources

Noise related to the surrounding environment

- Scattering with gas particles
- Scattering/emission/absorption of blackbody radiation
- Scattering of pl ctons from the driving field
- Possible losses for any electrical detection circuit coupled to the system
- Ambiental vibrational noise

equilibration of the particle

Observation: Collisions with gas particles and emission of blackbody radiation determine the bulk temperature of the nanoparticle.

TEQ

European Commission Calibration of decoherence sources

European Commission

Calibration of decoherence sources

Noise related to the surrounding environment

- Scattering with gas particles
- Scattering/emission/absorption of blackbody radiation
- Scattering of photons from the driving field comprehensive approach to scattering
- Possible losses for any electrical detection circuit coupled to the system
- Ambiental vibrational noise

$$\dot{\rho}_{S} = -i[H_{S}, \rho_{S}] + \int d\mathbf{k} \delta(\omega_{k} - \omega_{0} \left(2\mathcal{T}_{\mathbf{k}c}(\hat{r}) \hat{a}_{0} \rho_{s} \hat{a}_{0}^{\dagger} \mathcal{T}_{\mathbf{k}}^{*}(\hat{r}) - \left\{ \mathcal{T}_{\mathbf{k}c}(\hat{r}) |^{2} \hat{a}_{0}^{\dagger} \hat{a}_{0}, \rho_{S} \right\} \right)$$

Cavity field Scattering amplitude

For $R \ll \lambda$ Rayleigh theory (first-order Born approximation of the scattering amplitude)

$$\Gamma_{sca} = |\alpha|^2 \frac{\epsilon_c k_0^4 V^2}{V_0 V}$$
 Volume of nanosphere Volume of cavity mode

Commission

European

Calibration of decoherence sources

Noise related to the surrounding environment

- Scattering with gas particles
- Scattering/emission/absorption of blackbody radiation
- Scattering of photons from the driving field comprehensive approach to scattering
- Possible losses for any electrical detection circuit coupled to the system
- Ambiental vibrational noise

$$\dot{\rho}_{S} = -i[H_{S}, \rho_{S}] + \int d\mathbf{k} \delta(\omega_{k} - \omega_{0} \left(2\mathcal{T}_{\mathbf{k}c}(\hat{r}) \hat{a}_{0} \rho_{s} \hat{a}_{0}^{\dagger} \mathcal{T}_{c\mathbf{k}}^{*}(\hat{r}) - \left\{ \mathcal{T}_{\mathbf{k}c}(\hat{r}) |^{2} \hat{a}_{0}^{\dagger} \hat{a}_{0}, \rho_{S} \right\} \right)$$

Cavity field Scattering amplitude

For
$$R \ge \lambda$$
 Mie theory (higher-order expansion of the scattering amplitude)

$$\mathcal{L}[\rho_S] = \frac{|\alpha|^2 c}{2\pi^2 V_0} \int d\Omega |f(\mathbf{k}_0, k_0 \mathbf{n})|^2 \Big[\cos(\mathbf{k}_0 \cdot \hat{r}) e^{ik_0 \mathbf{n} \cdot \hat{r}} \rho_S e^{-ik_0 \mathbf{n} \cdot \hat{r}} \cos(\mathbf{k}_0 \cdot \hat{r}) - \frac{1}{2} \left\{ \cos^2(k_0 \cdot \hat{r}), \rho_S \right\} \Big]$$

$$= \frac{|\alpha|^2 c V^2 \epsilon_c^2 k^4}{12\pi^3 V_0} \int d\Omega \frac{3}{8\pi} \sin^2 \theta \Big[\cos(\mathbf{k}_0 \cdot \hat{r}) e^{ik_0 \mathbf{n} \cdot \hat{r}} \rho_S e^{-ik_0 \mathbf{n} \cdot \hat{r}} \cos(\mathbf{k}_0 \cdot \hat{r}) - \frac{1}{2} \left\{ \cos^2(k_0 \cdot \hat{r}), \rho_S \right\} \Big]$$

European Commission

Calibration of decoherence sources

Noise related to the surrounding environment

- Scattering with gas particles
- Scattering/emission/absorption of blackbody radiation
- Scattering of photons from the driving field comprehensive approach to scattering
- Possible losses for any electrical detection circuit coupled to the system
- Ambiental vibrational noise

$$\dot{\rho}_{S} = -i[H_{S}, \rho_{S}] + \int d\mathbf{k} \delta(\omega_{k} - \omega_{0} \left(2\mathcal{T}_{\mathbf{k}c}(\hat{r}) \hat{a}_{0} \rho_{*} \hat{a}_{0}^{\dagger} \mathcal{T}_{c\mathbf{k}}^{*}(\hat{r}) - \left\{ \mathcal{T}_{\mathbf{k}c}(\hat{r})|^{2} \hat{a}_{0}^{\dagger} \hat{a}_{0}, \rho_{S} \right\} \right)$$

Cavity field Scattering amplitude

Evolution of the cavity field

$$\hat{a}_{0}(t) = e^{-(\gamma(\hat{r}) + i(\omega_{\rm rn}(\hat{r}))t} a_{0} - i\frac{\omega_{0}\epsilon_{c}}{2V_{0}} \int_{0}^{t} d\tau e^{-(\gamma(\hat{r}) + i(\omega_{\rm rn}(\hat{r}))(t-\tau)} \int_{V(\hat{r})} (f(x)^{*})^{2} \hat{a}_{0}^{\dagger}(\tau)$$

$$\gamma_{sca} = 2 \frac{\epsilon_{c}^{2} k_{0}^{4} c}{V_{0}} V^{2}$$

Going beyond our "dues" for the reporting period

Amplifying the effects of CSL by smartly designed 'multi-layer' structures

M. Carlesso, A. Vinante, and A. Bassi, Phys. Rev. A 98, 022122 (2018)

European Commission

Going beyond our "dues" for the reporting period

"Correcting" fallacies in standard CSL: towards a more realistic model

 $T_{\rm C} = 10^{-7} \rm K$ *T_C*=1 K **Problem:** Standard CSL models Adle Adle are not energy-conserving. We designed a unitary unravelling 10-12 10⁻¹² $(s) \gamma^{(s)} \gamma^{(s)}$ of energy-conserving CSL to ν γ 10⁻¹⁴ GRW GRW estimate the effects on optomech. 10⁻¹⁶ 10⁻¹⁶ $\frac{\mathrm{d}\hat{x}}{\mathrm{d}t} = \frac{\hat{p}}{m} - \varkappa \hbar \, \hat{w}_x(t),$ 10⁻¹⁸ 10⁻¹⁸ $\frac{\mathrm{d}\hat{p}}{\mathrm{d}t} = -m\omega_0^2\hat{x} + \hbar g\hat{a}^{\dagger}\hat{a} - \gamma\hat{p} + \hat{\xi} - \hbar\hat{w}_p(t),$ 10-20 10-20 10⁻² 10⁻⁸ 10⁻⁸ 10⁻⁶ 10⁻⁴ 10⁻² 10⁰ 10^{-6} 10⁻⁴ *r_c* (m) r_{c} (m) $\frac{\mathrm{d}\hat{a}}{\mathrm{d}t} = -i\Delta_0\hat{a} + ig\hat{a}\hat{x} - \kappa\hat{a} + \sqrt{2\kappa}\hat{a}_{\mathrm{in}},$ $\Delta T_{\rm dCSL} = \frac{\hbar^2 \eta \left[1 + \varkappa^2 m^2 \left(\gamma^2 + \omega_0^2 \right) \right]}{2k m \alpha} - \frac{\gamma_{\rm CSL}}{\alpha} T$

J. Nobakht, M. Carlesso, S. Donadi, M. Paternostro and A. Bassi, Phys. Rev. A 98, 042109 (2018)

Commission

Going beyond our "dues" for the reporting period

Looking for smart preparations of non-classical states of massive oscillators

M Brunelli, O Houhou, D W Moore, A Nunnenkamp, M Paternostro, A Ferraro, Phys. Rev. A 98, 063801 (2018)

European Commission

Going beyond our "dues" for the reporting period

Development of a framework for quantum theory with no fixed causal order between events (causal loops, "superpositions of casual orders", the quantum switch)

Problem: Part of the motivation for gravitationally induced collapse models is the view that a lack of a classical causal structure is purported to prevent a consistent description of physical events and time evolution.

Even if the modification to quantum theory were true, they do not preclude entangled causal structures for short time scales.

Commission

Going beyond our "dues" for the reporting period

A massive body in a spatial superposition leads to "entanglement" of temporal orders between time-like events. This entanglement enables accomplishing a task, violation of a Bell inequality, that is impossible under (local) classical temporal order.

Comparison with the Diosi-Penrose time:

 $T_{DP} = \frac{2\delta^3\hbar}{G(ML)^2}$

$$\begin{split} &\delta = 10^{-7} s \quad r = 10^{10} R_S, \ L = 5r, \ h = r, \ M = 1g, \ R_S \approx 10^{-30} m, \ T \approx 7 \ 10^{-18} s, \ T_{DP} \approx 0.5s \\ &\delta = 10^{-15} s \quad r = 10^7 R_S, \ L = 5 \ 10^5 r, \ h = 10^5 r, \ M = 10^{-7} kg, \ T \approx 10^{-23} s, \ T_{DP} \approx 10^{-13} s \end{split}$$

European Commission

Going beyond our "dues" for the reporting period

Reconciling macroscopic superpositions, complementarity and causality

Problem: There have been suggestions that gravity & spacetime could be fundamentally classical. Moreover, it is assumed that macroscopic superpositions of massive objects does not necessitate quantization of gravity

Commission

European

Going beyond our "dues" for the reporting period

Reconciling macroscopic superpositions, complementarity and causality

Inconsistencies?

Assuming complementarity, Alice could determine whether or not Bob opened the trap, in violation of causality. Alternatively, assuming causality, Alice could maintain the coherence while which-path information has been acquired by Bob, in violation of complementarity.

European Commission

Going beyond our "dues" for the reporting period

Reconciling macroscopic superpositions, complementarity and causality

- Vacuum fluctuations limit Bob's ability to acquire which-path information
- Quantized radiation decohere Alice's superposition via entanglement with radiation

Commission

Going beyond our "dues" for the reporting period

Reconciling macroscopic superpositions, complementarity and causality

The quantum nature of the gravitational field both with regard to the quantization of gravitational radiation and the impossibility of localization to better than a Planck length—is essential for avoiding inconsistencies with "complementarity" and "causality".

Current work in progress

Work being developed: Quantum description of heat fluxes in a continuously monitored levitated optomechanical system $\frac{d\varrho}{dt} = \mathcal{L}\varrho = -i[H, \varrho] + \kappa \mathcal{D}[a]\varrho + \Gamma \mathcal{D}[b + b^{\dagger}]\varrho$ $d\varrho = \mathcal{L}\varrho \, dt + \sqrt{\eta_1 \kappa} \, \mathcal{H}[ae^{i\phi}]\varrho \, dw_1 + \sqrt{\eta_2 \Gamma} \, \mathcal{H}[b + b^{\dagger}]\varrho \, dw_2$ $dQ = \mathbf{Tr}[d\varrho H]$

European Commission

Current work in progress

Work being developed: Develop settings to test energy-conserving CSL. Including rotational degrees of freedom

Intense interactions and collaborations

Commission

Being ahead of the game

Person-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2
30	2	4	33	27.2	3	2	2	0

Tasks

T4.1 To assess decoherence on the experimental set up at the core of WP3.

T4.2 To determine experiment-specific bounds to CSL and SN mechanisms.

T4.3 To develop schemes to quantify the macroscopicity of quantum superposition states.

T4.4 To design settings for the test of energyconserving CSL and SN model.

T4.5 To compare time-dilation decoherence and gravity-induced collapse.

Objectives

O4.1 To set up a theoretical framework for the test of quantum mechanics at the mesoscopic level.O4.2 To design experimental tests able to refine the framework of collapse models.

O4.3 To investigate macro-realism at the mesoscopic level through the experiments at the core of TEQ.

Deliverables

D4.1 Calibration of decoherence [M12]

- D4.2 Bounds to CSL & SN models [M18]
- D4.3 Size of the superposition [M24]
- D4.4 Bounds to the ecCSL model [M36]
- **D4.5** Time-dilation/gravity collapse [M44]

European Commission

WP5: Management

A. Bassi - UniTS

Summary of WP5

Persons-Months

UniT	6 AU		INFN	OEAW	QUB	TUD	UCL	Soton	M2	
4)	2	4	2	2	2	2	2		2

Objectives

O5.1 Coordination of the project for the achievement of the objectives.

Tasks

T5.1 Organization of the project meetings. Management of unforeseen events.

T5.2 Setting up and maintenance of the website.

T5.3 Monitoring of Work Plan. Preparation of financial & scientific reports. T5.4 Preparation, implementation and update of the Data Management Plan.

Deliverables

D5.1 Website [M 2].

D5.2 Data Management Plan [M 6].

D5.3 Project Review Meeting documents M12 [M 14].

D5.4 Project Review Meeting documents M30 [M 32].

D5.5 Project Review Meeting documents M48 [M 48].

Organization

Project Officer Grant Agreement

A **Steering Committee** (SC), chaired by the coordinator (Bassi), will be established as the governance entity for the project. The SC will be formed by [the local PIs]. It will be supported by the **Administrative Officer**

appointed to assist with the management of the project and complemented by the **Consortium Press Officer**

(CPO), chosen among the members of the Consortium, who will be in charge of the dissemination plan. (from the GA – Annex I)

Stakeholders QT Community Wider Community General public Industry Press Policy makers

INTERNAL MANAGEMENT

UniTs - University of Trieste

Luca Ferialdi

PI

Angelo Bassi

Lorenzo Asprea

QUB - Queen's University of Belfast

Local PI Website

Gabriele De Chiara

Alessio Belenchia

Marta Maria Marchese Publications & Dissemination Manager

Matteo Carlesso

Website Manager

Caitlin Jones

Social Media Manager

Irene Spagnul

Administrative Officer

Alessandro Ferraro

Michael Drewsen Local PI Website

INFN - Istituto Italiano Fisica Nucleare

Catalina Curceanu

Local PI & Press Officer

Kristian Piscicchia

Cyrille Solaro

The Network

Alberto Clozza

Massimiliano Bazzi

Aurelién Dantan

Vincent Jarlaud

Arjan Houtepen

Jence Mulder

Website

Website

James Bain

TUD - Delft University of Technology

Local PI

Website

Liberato Manna

UoS - University of Southampton

Giulio Gasbarri

Ashley Setter

Andrea Vinante

Ilya Kull

Anishur Rahman

Jonathan Gosling

Marco Toros

Christopher Timberlake

Caslav Brukner

Esteban Castro Ruiz

Local PI

Website

Peter Barker

Antonio Pontin

Thomas Penny

Local PI

Website

OEAW - Austrian Academy of Sciences

UCL - University College London

ECRs & Gender dimension

Early Career Researchers									
Pai	rticipat	ing	Paid by TEQ						
Postdoc	PhD	Student	Postdoc	PhD	Student				
15	14	1	10	7	1				

Beneficiaries	Total number of females in the workforce	Total number of males in the workforce		
1 - UNIVERSITA DEGLI STUDI DI TRIESTE	1	3		
2 - AARHUS UNIVERSITET	1	4		
3 - ISTITUTO NAZIONALE DI FISICA NUCLEARE	1	1		
4 - OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEI	1	2		
5 - THE QUEEN'S UNIVERSITY OF BELFAST	1	2		
6 - TECHNISCHE UNIVERSITEIT DELFT	0	2		
7 - UNIVERSITY COLLEGE LONDON	0	4		
8 - UNIVERSITY OF SOUTHAMPTON	1	3		
9 - M-SQUARED LASERS LIMITED	5	16		

EXTERNAL MANAGEMENT

Interaction with other EU/(inter-)national projects

- The QT Flagship (EU)
- 2 COST Actions: CA15220 QTSpace + CA17113 on Trapped Ions (EU)
- MAQRO Project → ESA
- 1 Project funded by Centro Fermi (IT)
- 1 Project funded by The John Templeton Foundation (USA)
- 2 Grants from FQXi (USA)
- 2 MarieCurie Fellowship (EU)
- 1 Fellowship from The Leverhulme Trust (UK)
- 1 Project funded by The Royal Society (UK)
- 1 Newton International Fellowship (UK)

Task 5.1

Organization of the project meetings. Management of unforeseen events

- 02.02.2018 (Trieste): Kick off meeting
- 28.03.2018 (London): Scientific meeting •
- 22.06.2018 (Southampton): Scientific + SC Meeting
- 8-9.11.2018 (Delft): Scientific + SC Meeting

Place: Delft

Date: November, 2018

Schedule

November 8th, 2018: TEQ Junior Workshop

09:30 - 09:50 Welcome and introduction 09:50 - 10:10 J. Mulder (TUD) 10:10 - 10:30 T. Penny (UCL) 10:30 - 11:00 Coffee break 11:00 - 11:20 C. Jones (UniTS) 11:20 - 11:40 M. Marchese (QUB) 11:40 - 12:00 A. Belenchia (OEAW) 12:00 - 13:00 lab tour - theoretical discussion 13:00 - 14:20 Lunch 14:20 - 14:40 M. Toros (UoS) 14:40 - 15:00 M. Bazzi (INFN) 15:00 - 15:30 Coffee break 15:30 - 18:30 Scientific Discussion 10:00 -Social Dinner (see below)

November 9th, 2018

09:00 - 10:30 Steering Committee Meeting 10:30 - 11:00 Coffee break 11:00 - 13:00 Steering Committee Meeting 13:00 - 14:00 Lunch

Participants

UniTS: A. Bassi, M. Carlesso, C. Jones, G. Gasbarri, L. Asprea, I. Spagnul INFN: C. Curceanu, M. Bazzi UCL: P. Barker, J. Gosling, A. Rahman, T. Penney QUB: M. Paternostro, M.M. Marchese AU: M Drewsen TUD L. Manna, L. di Trizio, F. de Donato, J. Mulder, A. Houtepen UoS: A. Vinante, H. Ulbricht, M. Toros OEAW: A. Belenchia, I. Kull

WG meeting - TEQ meeting in Delft

TEO		Testing the large-scale	
100		limit of	
Jul	2	quantum mechanics	-
	TEO Ste	ering Committee Meeting	
	Delf	t – 9 th November 2018	
		MINUTES	
1. Welcome by	the SC Chair and	d adoption of the agenda	
The membe	rs present at the I	Meeting are:	
UniTS	A. Bassi, M.	Carlesso, G. Gasbarri, L. Asprea, C. Jones, I. Spagnul	
INFN	C. Curceanu	. M. Bezzi	
UCL	P. Barker, A.	Rahman, T. Penney	
QUB	M. Paternost	ro, M.M. Marchese	
AU	M. Drewsen		
TUD	L. Manna, A.	Houtepen, J. Mulder, L. De Trizio, F. De Donato	
UoS	H. Ulbricht	Winanta M Torne	
OEAW	A. Beler	TEO	Tracking the broom south
			testing the large-scale
The chair presents	the agenda,	SIL	quantum mechanics
The Chair summari meetings and TEQ	zes the mair official mee	the Consortium and described on the TEQ Websh he gives an overview of the differences in number the Website, on OpenAire and the EU Participant	E. Regarding publications and pre-prints, s between publications and pre-prints on Portal.
✓ Kick off mee	ting: 2 nd Feb	Irene Spagnul (TEQ's Administrative Officer) pre (with a focus on Dissemination part and Documer	sents the updates of the TEQ's Website it part).
 ✓ WG meeting ✓ WG meeting ✓ Workshop + The next TEQ SC r 	g: 28 th March g: 22 nd June : SC meeting meetings will	Catalina Curceanu (INFN) presents the draft of Plan (DEP) that has to be delivered by month 12 of followed on changes and additions. The draft is up more the Deliverable draft once it is ready (prepa	the TEQ. Dissemination and Exploitation f the project (December 2018). Discussion odated and partners agree to review once ration by UniTS).
will be in brussels (n 20 Peor	3. Mid-term workshop on the topic of the TE	٩
and the second second			
+01-34-1010		From the GA:organization of a workshop on th physics in the quantum technology era", which w TEQ's lifetime.	e topic of "Redefining the foundations of ill be held in Trieste in the second year of
		The Chair leads the discussion on the possible September 16 th (September 16-19) is agreed amo is agreed as written in the GA. The partners agree	dates for the workshop. The Week of ng the partners. The Title of the workshop a on the following committees:
		Local Committee: Angelo Bassi, Irene Spagnul	
		Programme Committee: Angelo Bassi (chair), O Paternostro, Michael Drewsen, Liberato Manna, Hempler	Catalina Curceanu, Peter Barker, Mauro , Hendrik Ulbricht, Caslev Brukner, Nils
		The Chair invites the partners to start thinking abo a busy period.	out the people to invite, being September
		4. Publications - EU policy on open access	
		Irene Spagnul (UniTS) presents the EU policy publications (obligations and guidelines). The par publishers or publishers who give less than 6 mor the partners are invited to use the platform Zenoc	on open access for H2020 FETOPEN there are encouraged to use open access this "embargo on publications. Moreover, to to deposit and give free access to their

discuss on this topic.

research dataset (unless they are allowed to do it on their institutional repositories). Partners

Task 5.2

Setting up and maintenance of the website

http://tequantum.eu/

hosted at the servers of INFN in Padriciano (Trieste, ITALY)

Public area

Private area

The logo represents a superposition, model as a red and a blue sphere, which is measured by a magnifying glass. Above, project's acronym.

Based on the same colour palette, fonts and logo, a set of templates have been designed by the TEQ WP6 Leader (UNITS):

- The TEQ letterhead;
- A template for project Deliverables;
- A template for project PowerPoint presentations;
- A template for project Press Releases.

Administrative Officer

- Assists the Chair in **managing** TEQ
- Updates the **public** sections of the website
- Uploads the documents in the **private** area
- Prepares the internal periodic **newsletters**
- Acts as secretary for the planned workshop

٠

٠

- Collects list of TEQ related **publications** & checks the acknowledgements
- Collects dissemination outputs
- Controls the **proper functioning** of the website
- Makes **changes** to the structure of the website when needed
- Updates the TEQ **Facebook** account
- Updates the TEQ **Twitter** account
 - Responds to questions and moderate comments

roles: - Proposed on March 2, 2018 - Approved unanimously in e-Vote by the SC on March 11, 2018

As per GA

Task 5.3

Monitoring of Work Plan. Preparation of financial & scientific reports.

- Organize scientific and SC meetings
- Ensure respect of deadlines
- Monitor of recruitment plan
- Collecting deliverables and submitting them
- Collecting data, assembling and submitting financial & scientific reports

Task 5.4

Preparation, implementation and update of the Data Management Plan

Further amended

European Commission

P6: DISSEMINATION C. Curceanu - INFN

limit of

Summary of WP6

Persons-Months

UniTS	AU	INFN	OEAW	QUB	TUD	UCL	Soton	M2	
18	2	4	2	2	2	2	2		2

Tasks

T6.1 Coordinate and promote dissemination of
TEQ and its findings.
T6.2 Manage internal communication.
T6.3 Coordinate and promote external
communication to targeted audiences.

Objectives

06.1 Implementation of targeted dissemination and communication activities.

Deliverables

D6.1 Press releases [M 3].
D6.2 Popular press articles [M 12].
D6.3 Videos [M 20].
D6.4 Workshop [M 24].
D6.5 Dissemination and exploitation Plan [M 12].

DISSEMINATION towards:

INTERNAL TEQ community

EXTERNAL Quantum community Broader scientific community Industry Schools, general public...

DISSEMINATION Overview

INTERNAL

- Consortium meeting and SC meetings.
- TEQ Website .
- TEQ Newsletters (4/year).

INTERNAL DISSEMINATION

Consortium meeting and SC meetings

✓ 1 Kick-off

✓ 3 Scientific meetings + smaller groups meetings

✓ 3 Steering Committee Meetings

STEERING COMMITTEE MEETINGS

TEC

Delft, 9th November 2018

INTERNAL DISSEMINATION

• **TEQ Website: tequantum.eu about 900 visits/week (3000 total views)**

Testing the large-scale limit of Quantum Mechanics

INTERNAL DISSEMINATION

• **TEQ Newsletters**

✓ June 2018

✓ September 2018

✓ December 2018

TABLE OF CONTENTS

UPDATE OF WORK DONE	3
CHANGES IN THE COMPOSITION OF THE CONSORTIUM	6
PUBLICATIONS	6
DISSEMINATION ACTIVITIES	7
ANY OTHER RELEVANT INFORMATION	7

Testing the large-scale limit of quantum mechanics

www.tequantum.eu

NEWSLETTER N.3, December 2018

Testing the large-scale limit of quantum mechanics

www.teguantum.eu

NEWSLETTER N.2, September 2018

Details and moments of the TEO experiments at TUDelft. Creaks: Delft University of Technology

Testing the large-scale limit of quantum mechanics

www.toquantum.ou

NEWSLETTER N.1, June 2018

A collection of press articles headings published in 2018 about TEQ.

argraduate student working on TEQ experiments at UoS. Create: University of Southampton.

DISSEMINATION Overview

EXTERNAL

- Publications on specialized journals.
- Participation in quantum-related meetings and conferences
- Publications in broad-readership journals
- Participation in broader scientific meetings and conferences
- Technical reports about TEQ and its findings.
- Invitations to visit project groups and labs, and to group meetings.
- Presentations and talks to R&D departments in industries.
- Publication of popular science articles.
- Participation to the yearly <u>Science Café</u> in Trieste, Italy.
- Popular-science <u>dissemination colloquia</u> in museums and schools.
- Publication on <u>New Scientist and Journals</u> with a similar audience.
- Articles and interviews in Newspaper.
- Participation to <u>Science-dedicated TV and Radio programs</u>.
- Facebook, Twitter and Youtube accounts.

EXTERNAL DISSEMINATION

- (Scientific) Publications: 21, representing 2.63 papers/partner
- Preprints: 30, representing 3 preprints/partner
- Talks: 83, representing 10.3 talks/partner
- Press releases: 3
- Articles in general press: 13
- Facebook and Twitter TEQ accounts
- Radio and TV events
- Event: 1 Quantum Café 400 partecipanti
- Papers in 2019: 3; preprints in 2019: 3

21 Scientific Articles - highlights:

- Physical Review Letters (3)
- Physical Review A (12),
- New Journal of Physics (2)
- The European Journal of Physics D (1)
- npj Quantum Information (1)
- Physical Review B (1)
- Nuclear Physics News (1)
- About 100 citations
- More than 120 Tweeters
- 1 Article in Top 5% (Brunelli, M., et al. "Experimental Determination of Irreversible Entropy Production in out-of-Equilibrium Mesoscopic Quantum Systems." Physical Review Letters. 121.16 (2018))) of al research outputs scored by altmetric and other 4 articles in Top 25%
- More than 1000 downloads

C. Curceanu at St . Mary College in Hobart (Tasmania, Australia) A > News

Groundbreaking experin Press Articles limits of quantum theory 2018 Belfastlive (UK) Queen's boffins part of University of Southampton (UK) why people can't be in two pBefore it's news (UK) UCL (UK) Atoms - on the other hand can Newswise (UK) Accentmontreal (CA) **New Scientist(UK)** ANSA (IT) Is this our first Il Piccolo di Trieste (IT) Il Piccolo di Trieste (IT) at O How Does the Quall Piccolo di Trieste (IT) Lim Cross O Scientific American(USA) The Universe according to quantum mechanics is stra Expele Scienze (IT) miled down. New experiments aim to pr wednesday into the other

THE WHISPER OF REALITY

Have we heard the sound the quantum universe makes? SCIENTIFIC AMERICAN JULY 2018

How Does the Quantum World Cross Over?

The universe according to quantum mechanics is strange and probabilistic, but our everyday reality seems nailed down. New experiments aim to probe where—and why—one realm passes into the other

9.5 million print and tablet readers worldwide, 10+ million global online unique visitors monthly

Is this our first clue to a world beyond quantum theory?

Our best theory of physical reality is exquisite – but inexplicable. A low, unexplained experimental noise could herald a revolution in the making

1 million worldwide readers every week

100.000 Paper copies

TEQuantum @TEQuantum

ŀ	1	0	n	10	e	

Posts

Reviews

Photos

About

Community

Events

Info and ads

Create a Page

LESCIENZE.IT

http://www.lescienze.it/.../ar.../2018/10/03/news/attraversando

worlds do not blend seamlessly. Read it here [Italian]]

A Share

TEQ is in LeScienze! In an article i#TEQuantum scientists, Dr Angelo Bassi and Dr Andrea Vinante talk about how the microscopic and macroscopic

Articoli Cartacei - Le Scienze

Il settimo senso 03 ottobre 2018 - Che nelle persone sane il cervello e il sistema immunitario non interagiscano è un'idea sostenuta da tempo. In anni recenti, tuttavia, alcuni ricercatori hanno

Share Share €

...

0-

00000

S Following *

-	
	Write a comment.

ib Liked ▼

TEO

TEQuantum

11 October 2018 - 😡

TEQuantum shared an event.

Tonight the first Caffé dei Quanti will be held in Trieste at II Caffé dei Libri. Come along for an evening of quantum mechanics and music from students of Conservatorio di Musica °Giuseppe Tartini°.

Facebook and Tweeter

Multimedia

Scienza, musica, teatro: avvicinarsi alla meccanica quantistica

Autunno 2018

Testing the large-scale limit of quantum mechanics

European Commission

FINANCIAL DATA

I. Spagnul - UniTS

Estimated budget for the action

Partner	A.Direct personnel costs	D.Other direct costs	E.Indirect costs	Total costs	Reimboursement rate	Requested EU contribution
UniTs	417 008,00	80 000,00	124 252,00	621 260,00	100%	621 260,00
AU	275 000,00	137 500,00	103 125,00	515 625,00	100%	515 625,00
INFN	200 000,00	107 500,00	76 875,00	384 375,00	100%	384 375,00
OEAW	265 000,00	32 900,00	74 745,00	372 375,00	100%	372 375,00
QUB	309 259,00	44 500,00	88 439,75	442 198,75	100%	442 198,75
TUDelft	251 572,00	63 500,00	78 768,00	393 840,00	100%	393 840,00
UCL	222 703,00	192 494,00	103 799,25	518 996,25	100%	518 996,25
Southampton	239 997,00	342 396,00	145 598,25	727 991,25	100%	727 991,25
M2	175 000,00	140 850,00	78 962,50	394 812,50	100%	394 812,50
Total	2 355 539,00	1 141 640	874 294,75	4 371 473,75		4 371 473,75

Summary of estimated project effort in Person-Months

	WP1	WP2	WP3	WP4	WP5	WP6	Total Person/Months per Participant
1 - UNITS	8	8	11	30	40	18	115
2 - AU	30	15	6	2	2	2	57
3 - INFN	19	20	10	4	4	4	61
4 - OEAW	8	12	16	33	2	2	73
5 - QUB	16	16	16	27.20	2	2	79.20
6 - TU Delft	38	9	3	3	2	2	57
7 - UCL	5	40	5.60	2	2	2	56.60
8 - SOUTHAMPTON	5	10	36	2	2	2	57
9 - M2	0	22	22	0	2	2	48
Total Person/Months	129	152	125.60	103.20	58	36	603.80

Summary of financial situation

Partner	A.Direct personnel	A.Direct personnel	D.Other direct costs	D.Other direct costs	Total costs	Total costs	% Total costs reported
	ESTIMATED (48 M)	REPORTED (12 M)	ESTIMATED (48 M)	REPORTED (12 M)	ESTIMATED (48 M)	REPORTED (12 M)	
UniTs	417 008,00	74 016,83	80 000,00	6 941,18	621 260,00	100 072,51	16,10%
AU	275 000,00	0,00	137 500,00	15 213,68	515 625,00	19 017,10	3,68%
INFN	200 000,00	33 969,69	107 500,00	3 960,08	384 375,00	47 412,21	12,33%
OEAW	265 000,00	64 553,46	32 900,00	0,00	372 375,00	80 691,83	21,66%
QUB	309 259,00	50 229,24	44 500,00	7 158,14	442 198,75	71 734,23	16,22%
TUDelft	251 572,00	38 521,50	63 500,00	7 943,43	393 840,00	58 081,16	14,74%
UCL	222 703,00	44 109,68	192 494,00	117 272,30	518 996,25	201 727,50	38,86%
Southampton	239 997,00	56 028,96	342 396,00	63 019,27	727 991,25	148 810,30	20,44%
M2	175 000,00	186 461,12	140 850,00	115 700,77	394 812,50	377 702,40	95,66%
Total	2 355 539,00	547 890,48	1 141 640	337 208,85	4 371 473,75	1 105 249,00	25,28%

Summary of project effort in Person-Months

Partner	PMs estimated (48 M)	PMs reported (12 M)	% PMs on total
UniTs	115	29.80	25,91 %
AU	57	11.53	20,22 %
INFN	61	4.89	8,01 %
OEAW	73	17.84	24,43 %
QUB	79.20	16.80	21,21 %
TUDelft	57	7.86	13,78 %
UCL	56.60	8.87	15,67 %
Southampton	57	14	24,56 %
M2	48	34.39	71,64 %
Total	603.80	156.54	25,92 %

Thank you!

Assessment of innovation

Innovation	Application/	Current status	Level of Innovation	How will the	Market maturity	Market competition	Commercialization	Prospects of
Title of innovation	stakeholders	Describe the current	A: Minor,	innovation be	A: The market is not	A: Patchy, no major	horizon	realization by end
	Description of	status of the	improvements over	exploited?	yet existing and it's	players	A: 1-3 years	of project
	innovation. What is	innovation (TRL	existing products;	A: Introduced as	not clear that the	B: Established	B: 3-5 years	What are the
	the potential	could be used)	B: Innovative but	new to the market	innovation has	competition but	C: 5-10 years	expected results by
	application?		difficult to convert	B: Only deployed as	potential to create a	none with a		the end of the
			customers;	new to the	new market	proposition like the		project?
			C: Obviously	organization/	B: Market-creating:	one under		Is spin-off company
			innovative and	company	the market is not	investigation		planned to be
	Who is driving this		easily appreciated	C: No exploitation	yet existing but the	C: Several major		established?
	in the consortium		advantages to	planned	innovation has clear	players with strong		
	(name specific		customers;		potential to create a	competencies,		
	beneficiary)?		D: Very innovative		new market	infrastructure and		
					C: Emerging: There	offerings		
					is a growing			
					demand and few			
					offerings are			
					available			
					D: Mature			

Innovation 1

Innovation	Application/ stakeholders	Current status	Level of Innovation	How will the innovation be exploited?	Market maturity	Market competition	Commercialization horizon	Prospects of realization by end of project
Low-noise digitally controlled DC-voltage source	The digitally controlled voltage supply developed within the TEQ consortium should find usage in a large range applications where extremely precise and tunable DC-voltages are required, for example ion trap based quantum technology, charged particle optics and, more generally, the emergent market of (quantum) technologies where high-precision is the standard. Driven by INFN and AU.	TRL 3-4	C: A final commercial product should potentially have more than a factor of 10 lower noise power spectral density in a broad band range from ~1 KHz to ~1 MHz as compared to current commercial DC- supplies	A: The innovation is expected to be introduced at the open market as a much improved product.	C: The innovation could immediately be introduced to the emergent market of quantum technologies	B: There will be competition by developments in research laboratories focusing on quantum technologies	B: ~3 years around the end of the TEQ project	A product that can be commercialized is the expected result at the end of the project. No spin-off company planned to be established, but we consider applying for funds under the FET Innovation Launchpad this year.

Low-noise DC voltage supplies

Low-noise DC voltage supplies

10x amplifier

DAC

Vout [V]

Frequency interval [5Hz-10kHz] 0.40 0.35 Noise New Voltage Ref 0.30 Intrinsic amplifier Noise out of 10x amplifiers $\left[\frac{Z}{2}\right]_{J}^{DC}$ 0.25 0.20 0.20 0.20 0.15 0.10 Noise out of DAC with new Vref ᢆ noise $20 \ nV/\sqrt{Hz}$ 0.05 0.00 10 2 8 0 6

Innovation 2

Innovation	Application/ stakeholders	Current status	Level of Innovation	How will the innovation be exploited?	Market maturity	Market competition	Commercialization horizon	Prospects of realization by end of project
Single Nanocrystal characterisation	Measuring properties including the absorption spectrum of a single isolated particle held in vacuum.	TRL1	<i>B: Innovative but difficult to convert customers</i>	A: Introduced as new to the market	A: The market is not yet existing and it's not clear that the innovation has potential to create a new market	<i>B: Established competition but none with a proposition like the one under investigation</i>	C: 5-10 years	The expected result is the full evaluation of concept to evaluate utility.

Instrument for single crystal spectroscopy and characterisation

Regular absorption spectroscopy is very difficult for a single crystal and is usually done on a sample containing a large number of crystals. In addition, it must be either on a surface or liquid. As part of TEQ we have developed a type of spectroscopy where the change in absorption from a levitated single crystal can be observed as a change in trap frequency. This is a new method for characterising the absorption properties of isolated single crystals and could be developed into a new type of spectroscopic microscope or as an add-on to existing microscopes.

Trap frequency of single trapped crystal with wavelength

Commercial Raman microscope from Thermofisher

Innovation 3

Innovation	Application/ stakeholders	Current status	Level of Innovation	How will the innovation be exploited?	Market maturity	Market competition	Commercialization horizon	Prospects of realization by end of project
Nanoparticles emitting in the near infrared with high quantum yield	Besides the applications targeted by TEQ, these nanoparticles could find application in luminescent solar concentrators (TU Delft)	At the moment, this is only a proposed idea. The particles need to have absorption in the visible range and Stokes shifted emission in the NIR	B. These particles need to be stable in polymer matrixes and also be non- toxic. At the moment we cannot claim any of these two points.	B. We are in stage of developing this technology. If positive evaluation will be given the Tech transfer office, a patent application will be filed.	C. There are only a few startup companies developing luminescent solar concentrators and looking for these kind of emitters.	A: Patchy, no major players	B: 3-5 years	The most likely scenario is that, if this technology is developed, it will be licensed to an existing company.

Near-infrared nanoparticle-based emitters for luminescent solar concentrators

- 25 cm

Idea: to have Yb doped nanoparticles absorbing the solar light and emitting it with QY close to 100% in the NIR

Meinardi et al. ACS Energy Lett., 2017, 2 (10), 2368–2377

Thank you

